Skip to main content
Log in

Effects of silver nanoparticles and fungal degradation on density and chemical composition of heat-treated poplar wood (Populous euroamerica)

Einfluss einer Imprägnierung mit Silber-Nanopartikeln auf den pilzbedingten Holzabbau, die Dichte und die chemische Zusammensetzung von thermisch behandeltem Pappelholz (Populous euroamerica)

  • Originals Originalarbeiten
  • Published:
European Journal of Wood and Wood Products Aims and scope Submit manuscript

Abstract

Effects of silver nanoparticles and fungal degradation on the weight loss and chemical composition of heat-treated poplar wood were studied. Wood blocks were impregnated with a 400 ppm nanosilver suspension under 3 bar pressure for 20 min using Lowry process (edited empty cell). Heat-treatment was carried out at 135, 160 and 185 °C. Specimens were divided into 4 groups; control, nanosilver impregnated, heat-treated and impregnated- heat treated specimens (135, 160 and 185 °C). All samples from the internal and superficial parts of the blocks were exposed to the white rot fungus Trametes versicolor. The results of heat-treated samples indicated higher amount of Klason lignin and extractives, but lower holocellulose and cellulose content. Furthermore, heat-treatment illustrated an increasing effect on the fungal resistance. For all the properties, significant difference was found between the internal and superficial test specimens. Nanosilver impregnation had an intensifying effect on the results of the heat-treatment.

Zusammenfassung

Untersucht wurde der Einfluss einer Imprägnierung mit Silber-Nanopartikeln auf den pilzbedingten Holzabbau, den Masseverlust und die chemische Zusammensetzung von thermisch behandeltem Pappelholz. Holzprüfkörper wurden mit einer 400 ppm Nanosilber-Lösung bei einem Druck von 3 bar und über eine Dauer von 20 Minuten nach dem Lowry-Verfahren imprägniert. Die Temperaturen der thermischen Behandlung betrugen 135, 160 und 185 °C. Die Prüfkörper wurden in die vier Gruppen Kontrolle, mit Nanosilber imprägnierte, thermisch behandelte sowie imprägnierte und thermisch behandelte Prüfkörper (135, 160 und 185 °C) unterteilt. Alle Proben aus dem inneren und dem oberflächennahen Bereich der Prüfkörper wurden dem Weißfäulepilz Trametes versicolor ausgesetzt. Die thermisch behandelten Prüfkörper wiesen eine höhere Menge an Klason-Lignin und Extraktstoffen auf, jedoch einen geringeren Holocellulose- und Celluloseghalt. Darüber hinaus zeigte sich eine Zunahme der Pilzresistenz aufgrund thermischer Behandlung. Bei allen Versuchen ergaben sich signifikante Unterschiede zwischen den inneren und den oberflächennahen Proben. Die Nanosilber-Imprägnierung wirkte sich positiv auf die Ergebnisse der thermischen Behandlung aus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 Abb. 1
Fig. 2 Abb. 2
Fig. 3 Abb. 3

Similar content being viewed by others

References

  • Akgul M, Korkut S (2012) The effect of heat treatment on some chemical properties and colour in Scots pine and Uludag fir wood. Int J Phys Sci 7(21):2854–2859

    Google Scholar 

  • Akhtari M, Ghorbani Kokandeh M, Taghiyari HR (2012) Study on the mechanical properties of Paulownia wood impregnated with silver, copper, and zinc oxide nanoparticles. Journal of Tropical Forest Science, 24(4) (in press)

  • Awoyemi L (2007) Determination of optimum borate concentration for alleviating strength loss during heat treatment of wood. Wood Sci Technol 42:39–45

    Article  Google Scholar 

  • Awoyemi L, Westermark U (2005) Effects of borate impregnation on the response of wood strength to heat treatment. Wood Sci Technol 39:484–491

    Article  CAS  Google Scholar 

  • Brito JO, Silva FG, Leao MM, Almeida G (2008) Chemical composition changes in eucalyptus and pinus woods submitted to heat treatment. Bioresour Technol 99:8545–8548

    Article  CAS  PubMed  Google Scholar 

  • Clausen CA (2007) Nanotechnology: Implications for the Wood preservation Industry. International Research Group on Wood Protection, Stockholm, Sweden, IRG/WP/07-30415.15p

  • Elder T (1991) The pyrolysis of wood. In: Hon DNS, Shiraishi N (eds) Wood and cellulosic chemistry. Marcel Dekker, New York, pp 665–699

    Google Scholar 

  • Ghorbani M, Akhtari M, Taghiyari HR, Kalantari A (2012) Effects of silver and zinc-oxide nanoparticles on gas and liquid permeability of heat-treated Paulownia wood. Aust J Forest Sci 129(1):106–123

    Google Scholar 

  • Hakkou M, Petrissans M, Gerardin P, Zoulalian A (2006) Investigations of the reasons for fungal durability of heat-treated beech wood. Polym Degrad Stab 91:393–397

    Article  CAS  Google Scholar 

  • Hill C (2006) Wood modification chemical, thermal and other processes. Wiley, New Jersey, p 239. ISBN: 0-470-02172-1

  • Jana S, Salehi-Khojin A, Zhong WH (2007) Enhancement of fluid thermal conductivity by the addition of single and hybrid nano-additives. Thermochim Acta 462:45–55

    Article  CAS  Google Scholar 

  • Kamdem DP, Pizzi A, Jermannaud A (2002) Durability of heat-treated wood. Holz Roh Werkst; 60:1e6

    Google Scholar 

  • Kartal S, Wang W, Imamura Y (2008) Combined effect of boron compounds and heat treatments on wood properties: Chemical and strength properties of wood. J Mat Proc Technol, p 198

  • Kocaefe D, Poncsak S, Boluk Y (2008) Effect of thermal treatment on the chemical composition and mechanical properties of birch and aspen. Bio Resources 3(2):517e37

    Google Scholar 

  • Li XF, Zhu DS, Wang XJ, Wang N, Gao JW, Li H (2008) Thermal conductivity enhancement dependent pH and chemical surfactant for Cu + H2O nanofluids. Thermochim Acta 469:98–103

    Article  CAS  Google Scholar 

  • Liau SY, Read DC, Pugh WJ, Furr JR, Russell AD (1997) Interaction of silver nitrate with readily identifiable groups: relation to the antibacterial action of silver ions. Lett Appl Microbiol 25:279–283

    Article  CAS  PubMed  Google Scholar 

  • Mburu F, Dumarcay S, Bocquet JF, Petrissans M, Gerardin P (2008) Effect of chemical modifications caused by heat treatment on mechanical properties of Grevillea robusta wood. Polym Degrad Stab 93:401–405

    Article  CAS  Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16(10):2346–2353

    Article  CAS  PubMed  Google Scholar 

  • Nuopponen M, Vuorinen T, Jamsa S, Viitaniemi P (2004) Thermal modifications in softwood studied by FT-IR and UV resonance Raman spectroscopies. J Wood Chem Technol 24(1):13–26

    Article  CAS  Google Scholar 

  • Shahrokh S, Emtiazi G (2009) Toxicity and unusual biological behavior of Nanosilver on gram positive and negative bacteria assayed by microtiter-plate. Eur J Biol Sci 1(3): 28–31. ISSN 2079-2085

    Google Scholar 

  • Sivonen H, Maunu SL, Sundholm F, Jämsä S, Viitaniemi P (2002) Magnetic resonance studies of thermally modified wood. Holzforschung 56(6):648–654

    Article  CAS  Google Scholar 

  • Stamm AJ, Baechler RH (1960) Decay resistance and dimensional stability of five modified woods. Forest Prod J 10:22–26

    CAS  Google Scholar 

  • Taghiyari HR, Farajpour Bibalan O (2012) Effect of copper nanoparticles on permeability, physical, and mechanical properties of particleboard. Eur J Wood Prod 71(1):69–77

    Article  Google Scholar 

  • Taghiyari HR, Moradi Malek B, Karimi A (2011) Effects of nano-silver on brittleness of heat- treated solid woods. IRG/WP 11-40572

  • Taghiyari HR, Enayati A, Gholamiyan H (2012) Effects of nanosilver impregnation on brittleness, physical and mechanical properties of heat-treated hardwoods. Wood Sci Technol 47(3):467–480

    Article  Google Scholar 

  • Wan JQ, Wang Y, Xiao Q (2010) Effects of hemicellulose removal on cellulose fiber structure and recycling characteristics of eucalyptus pulp. Bioresour Technol 101:4577–4583

    Article  CAS  PubMed  Google Scholar 

  • Winandy JE, Smith WR (2006) Enhancing composite durability: using thermal treatments. In: Barnes HM (ed) Proceed Wood Protection. Forest Prod Society, New Orleans, pp 195–199

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ghorbani Kookande.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moradi Malek, B., Ghorbani Kookande, M., Taghiyari, H.R. et al. Effects of silver nanoparticles and fungal degradation on density and chemical composition of heat-treated poplar wood (Populous euroamerica). Eur. J. Wood Prod. 71, 491–495 (2013). https://doi.org/10.1007/s00107-013-0708-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00107-013-0708-1

Keywords

Navigation