European Journal of Wood and Wood Products

, Volume 70, Issue 5, pp 667–670 | Cite as

Moisture-dependent, viscoelastic creep of European beech wood in longitudinal direction

  • Stefan HeringEmail author
  • Peter Niemz
Originals Originalarbeiten


In the present study, the pure viscoelastic behaviour of European beech wood is analysed in the longitudinal direction at three different moisture contents. The moisture-dependent creep compliance is identified using a four-point bending test device. The viscoelastic behaviour is ascertained to be linear with moisture content and quantified by means of a Kelvin-Voigt model approach.


Tension Wood Creep Compliance Compliance Function Viscoelastic Creep Element Compliance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Viskoelastisches Kriechverhalten von Rotbuche in longitudinaler Richtung bei verschiedenen Holzfeuchten


In dieser Arbeit wird das viskoelastische Verhalten von Rotbuchenholz in longitudinaler Richtung bei drei verschiedenen Holzfeuchten untersucht. Mit Hilfe eines Vierpunktbiegeprüfstandes wurde die feuchteabhängige Kriechnachgiebigkeit bestimmt. Ein linearer Zusammenhang zwischen der Holzfeuchte und der Kriechnachgiebigkeit wird nachgewiesen und anhand eines verallgemeinerten Kelvin-Voigt Ansatzes quantifiziert.



This work was funded by the State Secretariat for Education and Research of Switzerland (SER) and supported by the European Cooperation in the field of Scientific and Technical Research (COST, Action E53).


  1. Bazant ZP (1985) Constitutive equation of wood at variable humidity and temperature. Wood Sci Technol 19:159–177 CrossRefGoogle Scholar
  2. Bengtsson C, Kliger R (2003) Bending creep of high-temperature dried spruce timber. Holzforschung 57:95–100 CrossRefGoogle Scholar
  3. Dubois F, Randriambololona H, Petit C (2005) Creep in wood under variable climate conditions: Numerical modeling and experimental validation. Mech Time-Depend Mater 9:173–202 CrossRefGoogle Scholar
  4. Fortino S, Mirianon F, Toratti T (2009) A 3D moisture-stress FEM analysis for time dependent problems in timber structures. Mech Time-Depend Mater 13:333–356 CrossRefGoogle Scholar
  5. Hanhijärvi A, Hunt D (1998) Experimental indication of interaction between viscoelastic and mechano-sorptive creep. Wood Sci Technol 32:57–70 CrossRefGoogle Scholar
  6. Hanhijärvi A, Mackenzie-Helnwein P (2003) Computational analysis of quality reduction during drying of lumber due to irrecoverable deformation. I: Orthotropic viscoelastic-mechanosorptive-plastic material model for the transverse plane of wood. J Eng Mech 129:9 :996-1004 CrossRefGoogle Scholar
  7. Holzer SM, Loferski JR, Dillard DA (1989) A review of creep in wood: concepts relevant to develop long-term behavior predictions for wood structures. Wood Fiber Sci 21(4):376–392 Google Scholar
  8. Hunt DG (1999) A unified approach to creep of wood. Proc R Soc Lond A:4077–4095 Google Scholar
  9. Hunt DG, Shelton CF (1987) Progress in the analysis of creep in wood during concurrent moisture changes. J Mater Sci 22:313–320 CrossRefGoogle Scholar
  10. Kaliske M (2000) A formulation of elasticity and viscoelasticity for fibre reinforced material at small and finite strains. Comput Methods Appl Mech Eng 185(2–4):225–243 CrossRefGoogle Scholar
  11. Liu T (1993) Creep of wood under a large span of loads in constant and varying environments—Part 1: Experimental observations and analysis. Holz Roh- Werkst 51:400–405 CrossRefGoogle Scholar
  12. Liu T (1994) Creep of wood under a large span of loads in constant and varying environments—Part 2: Theoretical investigations. Holz Roh- Werkst 52:63–70 CrossRefGoogle Scholar
  13. Lockett FJ (1972) Nonlinear viscoelastic solids. Academic Press, New York Google Scholar
  14. Mohager S, Toratti T (1992) Long term bending creep of wood in cyclic relative humidity. Wood Sci Technol 27(1):49–59 CrossRefGoogle Scholar
  15. Niemz P (1993) Physik des Holzes und der Holzwerkstoffe. DRW-Verlag Weinbrenner GmbH & Co, Leinfelden-Echterdingen Google Scholar
  16. Nowacki W (1965) Theorie des Kriechens. Franz Deuticke, Wien Google Scholar
  17. Ranta-Maunus A (1975) The viscoelasticity of wood at varying moisture content. Wood Sci Technol 9:189–205 CrossRefGoogle Scholar
  18. Svensson S, Toratti T (2002) Mechanical response of wood perpendicular to grain when subjected to changes of humidity. Wood Sci Technol 36:145–156 CrossRefGoogle Scholar
  19. Toratti T (1992) Creep of timber beams in a variable environment. Helsinki University of Technology Google Scholar
  20. Toratti T, Svensson S (2000) Mechano-sorptive experiments perpendicular to grain under tensile and compressive loads. Wood Sci Technol 34(4):317–326 CrossRefGoogle Scholar
  21. Zhou Y, Fushitani M, Kubo T, Ozawa M (1999) Bending creep behaviour of wood under cyclic moisture changes. J Wood Sci 45:113–119 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Institute for Building Materials (Wood Physics)ETH ZurichZurichSwitzerland

Personalised recommendations