European Journal of Wood and Wood Products

, Volume 70, Issue 5, pp 615–620 | Cite as

Chemical composition and biological activity of the essential oil from the wood of Pinus heldreichii Christ. var. leucodermis

  • K. Graikou
  • O. Gortzi
  • G. Mantanis
  • I. ChinouEmail author
Originals Originalarbeiten


The chemical composition of the essential oil obtained by steam distillation from the wood of P. heldreichii, collected from north Greece area was determined by GC and GC/MS for the first time. Forty constituents (corresponding to 96.3% of the total weight) were identified. The main components were: limonene, cembrene, longifolene, α-pinene, methyl chavicol, kaurene and cembrene A. The antimicrobial activity of the oil was evaluated against six Gram positive and Gram negative bacteria and three human pathogenic fungi, using the agar dilution technique. Strong activities against most of the tested microorganisms were exhibited. Moreover, the oil showed a very promising antioxidant activity through Rancimat method.


Limonene Kaurene Rancimat Method Methyl Chavicol Longifolene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Chemische Zusammensetzung und biologische Aktivitäten des ätherischen Öls aus dem Holz von Pinus leucodermis


Das ätherische Öl aus Holz von P. heldreichii, (Nordgriechenland) wurde mittels Wasserdampfdestillation gewonnen und die chemische Zusammensetzung mit GC und GC/MS analysiert. Vierzig verschiedene Inhaltsstoffe (entsprechend bis 96.3 % des Gesamtgewichts) konnten identifiziert werden. Die Hauptinhaltsstoffe waren: Limonen, Cembren, Longifolen, α-Pinen, Methylchavicol, Kauren und Cembren A. Die antimikrobielle Aktivität des ätherischen Öls wurde an sechs Gram positiven und negativen Bakterien sowie drei pathogenen Pilzen mit der Agardiffusionsmethode bestimmt. Das ätherische Öl zeigte eine deutliche antimikrobielle Aktivität gegen die meisten geprüften Mikroorganismen. Die antioxidative Wirkung des ätherischen Öls, die mit der Rancimat Methode getestet wurde, war vielversprechend.


  1. Adams RP (2007) Identification of essential oil components by gas chromatography/mass spectroscopy. Allured, Carol Stream Google Scholar
  2. British Pharmacopoeia (1993) vol I, international ed. HMSO, London Google Scholar
  3. Chen S, Liu J, Gong H, Yang D (2009) Identification and antibacterial activity of secondary metabolites from Taxus endophytic fungus. Chin J Biotechnol 25:368–374 Google Scholar
  4. Farjon A (1984) Pines: drawings and descriptions of the genus Pinus. Brill & Backhuys, Leiden Google Scholar
  5. Fuster MD, Lampi AM, Hopia A, Kamal-Eldin A (1998) Effects of α- and γ-tocopherols on the autoxidation of purified sunflower triacylglycerols. Lipids 33:715–722 PubMedCrossRefGoogle Scholar
  6. Kordali S, Cakir A, Mavi A, Kilic H, Yildirim A (2005) Screening of chemical composition and antifungal and antioxidant activities of the essential oils from three Turkish Artemisia species. J Agric Food Chem 53:1408–1416 PubMedCrossRefGoogle Scholar
  7. Lalas S, Tsaknis J (2002) Extraction and identification of natural antioxidant from the seeds of Moringa oleifera tree variety of Malawi. J Am Oil Chem Soc 79:677–683 CrossRefGoogle Scholar
  8. Lalas S, Dourtoglou V (2003) Use of rosemary extract in preventing oxidation during deep fat frying of potato chips. J Am Oil Chem Soc 80:579–583 CrossRefGoogle Scholar
  9. Lange W, Janežic TS, Spanoudaki M (1994) Cembratrienols and other components of white bark pine (Pinus heldreichii) oleoresin. Phytochemistry 36:1277–1279 CrossRefGoogle Scholar
  10. Maric S, Jukic M, Katalinic V, Milos M (2007) Comparison of chemical composition and free radical scavenging ability of glycosidically bound and free volatiles from Bosnian pine (Pinus heldreichii Christ. var. leucodermis). Molecules 12:283–289 PubMedCrossRefGoogle Scholar
  11. Martos-Viuda M, Navajas YR, Zapata ES, Fernandez-Lopez J, Pérez-Álvarez J (2010) Antioxidant activity of essential oils of five spice plants widely used in a Mediterranean diet. Flavour Frag J 25:13–19 CrossRefGoogle Scholar
  12. Massada Y (1976) Analysis of essential oil by gas chromatography and spectrometry. Wiley, New York Google Scholar
  13. Nikolic B, Ristic M, Bojovic S, Marin PD (2007) Variability of the needle essential oils of Pinus heldreichii from different populations in Montenegro and Serbia. Chem Biodivers 4:905–911 PubMedCrossRefGoogle Scholar
  14. Obst JR (1998) Special (secondary) metabolites from wood. In: Forest products biotechnology. Taylor & Francis, New York, p 153 Google Scholar
  15. Petrovic M, Miric M (1981) Resistance to decay fungi of the wood of munica (Pinus heldreichii), silver fir and Norway spruce in comparison with Scots pine. J Sumarstvo 34:27–34 (in Serbo-Croat) Google Scholar
  16. Petrakis PV, Tsitsimpikou C, Tzakou O, Couladis M, Vagias C, Roussis V (2001) Needle volatiles from five Pinus species growing in Greece. Flavour Frag J 16:249–252 CrossRefGoogle Scholar
  17. Runyoro D, Ngassapa O, Vagionas K, Aligiannis N, Graikou K, Chinou I (2010) Chemical composition and antimicrobial activity of the essential oils of four Ocimum species growing in Tanzania. Food Chem 119:311–316 CrossRefGoogle Scholar
  18. Ruberto G, Baratta MT (2000) Antioxidant activity of selected essential oil components in two lipid model systems. Food Chem 69:167–174 CrossRefGoogle Scholar
  19. Rushforth KD (1987) Conifers: facts on file publications. New York, pp 232 Google Scholar
  20. Schuler P (1990) Natural antioxidants exploited commercially. In: Hudson BJF (ed) Food antioxidants. Elsevier, London, pp 99–170 CrossRefGoogle Scholar
  21. Silba J (1986) An international census of the Coniferae. In: Moldenke HN, Moldenke AL (eds) Phytologia memoirs no. 8, Corvallis, OR, USA Google Scholar
  22. Todaro L, Andreu L, D’Alessandro CM, Gutierrez E, Cherubini P, Saracino A (2007) Response of Pinus leucodermis to climate and anthropogenic activity in the National Park of Pollino (Basilicata, Southern Italy). Biol Conserv 137:507–519 CrossRefGoogle Scholar
  23. Thirugnanasampandan R, Jayakumar R, Narmatha Bai V, Martin E, Rajendra Prasad KJ (2008) Antiacetylcholinesterase and antioxidant ent-Kaurene diterpenoid, melissoidesin from Isodon wightii (Bentham) H. Hara. Nat Prod Res 22:681–688 PubMedCrossRefGoogle Scholar
  24. Tsoumis G (1983) Science and technology of wood. Van Nostrand Reinhold, New York, pp 456 Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Dept. of Pharmacy, Div. of Pharmacognosy & Chemistry of Natural ProductsUniversity of AthensAthensGreece
  2. 2.Dept. of Food TechnologyTechnological Educational Institution (TEI) of LarissaKarditsaGreece
  3. 3.Lab. of Wood Technology, Department of Wood & Furniture Design and TechnologyTechnological Educational Institute (TEI) of LarissaKarditsaGreece

Personalised recommendations