European Journal of Wood and Wood Products

, Volume 70, Issue 5, pp 595–600 | Cite as

Mechanical performance and dimensional stability of nano-silver impregnated densified spruce wood

  • Ghonche RassamEmail author
  • Mohammad Ghofrani
  • Hamid Reza Taghiyari
  • Behnam Jamnani
  • Mohamad Ali Khajeh
Originals Originalarbeiten


The aim of this study was to investigate the effect of nano-silver treatment on some physical and mechanical properties of compressed low density wood species. Wood specimens were prepared from spruce (Picea abies), impregnated with water or nano-silver solution by empty cell process and compressed through radial direction in a hot press. The results showed that by nano-silver treatment, the spring back, bending strength (modulus of rupture) and impact load resistance were improved significantly. The best results for spring-back (0.04%) were seen in the nano-silver impregnated specimens that were compressed at 150°C for 4 hours. The modulus of rupture (MOR), modulus of elasticity (MOE) and impact load resistance in nano-silver impregnated densified specimens were gained for 53%, 41.2% and 175.7%, respectively (in comparison with controls). The maximum amounts of impact load resistance belonged to the nano-silver impregnated specimens which were compressed at press conditions of 150°C for 4 hours, showing the high ability of these specimens against high impact loads such as earthquake loads. An upcoming research (consisting of durability tests) will be done for evaluating the suitability of nano-silver impregnated densified spruce wood for exterior uses.


Hemicellulose Densified Wood Dimensional Stability Shape Recovery Wood Specimen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Mechanische Eigenschaften und Dimensionsstabilität von mit Nanosilber imprägniertem Fichtenpressholz


Ziel dieser Studie war es, den Einfluss einer Imprägnierung mit Nanosilber auf physikalische und mechanische Eigenschaften von Pressholz aus Holzarten mit geringer Dichte zu untersuchen. Aus Fichtenholz (Picea abies) wurden Prüfkörper hergestellt, mit Wasser- oder Nanosilberlösung mittels Leerzellverfahren imprägniert und in radialer Richtung in einer Heißpresse verdichtet. Die Ergebnisse zeigten, dass mittels Nanosilberimprägnierung die Rückverformung, die Biegefestigkeit und die Schlagbiegefestigkeit signifikant verbessert wurden. Die geringste Rückverformung (0,04 %) und die höchste Schlagbiegefestigkeit ergaben sich bei mit Nanosilber imprägnierten Prüfkörpern, die bei 150°C für eine Dauer von 4 Stunden verdichtet wurden. Die Biegefestigkeit von mit Nanosilber imprägnierten Pressholzprüfkörpern nahm im Vergleich zu den Kontrollproben um 53 % zu, der Elastizitätsmodul um 41,2 % und die Schlagbiegefestigkeit um 175,7 %. Dies zeigt das große Potential, das so behandeltes Holz bei hohen Stoßbelastungen, z. B. Erdbebenlasten, hat. Weitere Untersuchungen (Dauerhaftigkeitsprüfungen) sind geplant, um die Eignung von mit Nanosilber imprägniertem Fichtenpressholz für Anwendungen im Außenbereich zu untersuchen.



The financial support provided by the Shahid Rajaee Teacher Training University is gratefully acknowledged.


  1. ASTM D 143 (2000) Standard test methods for small clear specimens of timber Google Scholar
  2. Bodig J, Jayne BA (1982) Mechanics of wood and wood composites. Van Nostrand Reinhold Company, New York Google Scholar
  3. Boonstra MJ, Blomberg J (2007) Semi-isostatic densification of heat-treated radiata pine. Wood Sci Technol 41:607–617 CrossRefGoogle Scholar
  4. Cai A, Akhtar X, Feng M, Wan H, Zhang T (2009) Development of value-added products from BC low-quality wood resource using nano-based technology literature review. Prepared for FP Innovations FORITEK. Forestry Innovation Investment Google Scholar
  5. Cai X, Riedl B, Zhang SY, Wan H (2007) Effects of nanofillers on water resistance and dimensional stability of solid wood modified by melamine-urea-formaldehyde resin. Wood Fiber Sci 39(2):307–318 Google Scholar
  6. Dwianto W, Inoue M, Tanaka F, Norimoto M (1996) The permanent fixation of compressive deformation in wood by heat treatment. In: Proceeding from the 3rd Pacific Rim Bio-based composites symposium, Kyoto, Japan Google Scholar
  7. Heger F, Groux M, Girardet F, Welzbacher C, Rapp AO, Navi P (2004) Mechanical and durability performance of THM-densified wood. In: Final workshop COST action E22 environmental optimization of wood protection, Lisbon, Portugal Google Scholar
  8. Hsu WE, Schwald J, Shields A (1998) Chemical and physical changes required for producing dimensionally stable wood-based composites. Part 1: Steam pre-treatment. Wood Sci Technol 22:281–289 CrossRefGoogle Scholar
  9. Inoue M, Norimoto M, Tanahashi M, Rowell RM (1993) Steam or heat fixation of compressed wood. Wood Fiber Sci 25(3):224–235 Google Scholar
  10. Inoue M, Sekino N, Morooka T, Norimoto M (1996) Dimensional stabilization of wood composites by steaming I. Fixation of compressed wood by pre-steaming. In: Proceeding from the 3rd pacific rim-bio-based composites symposium, Kyoto, Japan Google Scholar
  11. Ito Y, Tanahashi M, Shigematsu M, Sinoda Y, Ohta C (1998) Compressive-molding of wood by high pressure steam. Part I. Development of compressively molded squares from thinnings. Holzforschung 52(2):211–216 CrossRefGoogle Scholar
  12. Kamke FA (2006) Densified radiata pine for structural composites. Maderas. Ciencia y technologia 8(2):83–92 Google Scholar
  13. Kocaefe D, Poncsak S, Boluk Y (2008) Thermal treatment of aspen (effect of thermal treatment on the chemical composition and mechanical properties of birch and aspen). BioResources 3(2):517–537 Google Scholar
  14. Kollmann F (1936) Technologie des Holzes und der Holzwerkstoffe. Springer, Berlin Google Scholar
  15. Mohebby B, Sharifnia-Dizboni H, Kazemi-Najafi S (2009) Combined hydro-thermo-mechanical modification (CHTM) as an innovation in mechanical wood modification. In: Proceeding from 4th European conference on wood Modification, Stockholm, Sweden Google Scholar
  16. Morsing N (2000) Densification of wood. The influence of Hygrothermal treatment on compression of beech perpendicular to the grain. Department of Structural Engineering and Materials Technical University of Denmark. Series R No. 79 Google Scholar
  17. Navi P, Girardet F (2000) Effects of thermo-hydro-mechanical treatment on the structure and properties of wood. Holzforschung 54:287–293 CrossRefGoogle Scholar
  18. Navi P, Heger F (2004) Combined densification and thermo-hydro-mechanical processing of wood. MRS bulletin Google Scholar
  19. Rassam G, Taghiyari HR, Jamnani B, Khaje MA (2010) Effect of Nano-Silver treatment on densified wood properties. Part one: swelling, recovery set, bending strength, Biarritz, France: International Research Group of Wood Protection, Doc. No.: IRG/WP 10-40533 Google Scholar
  20. Siau JF (1984) Transport processes in wood. Springer, New York, 245 pp CrossRefGoogle Scholar
  21. Spiegelberg HL (1966) The effect of hemicelluloses on the mechanical properties of individual pulp fibers. Dissertation, Lawrence University Google Scholar
  22. Taghiyari HR (2010) Study on the effect of nano-silver impregnation on mechanical properties of heat-treated Populus nigra. Wood Sci Technol 45(2):399–404 CrossRefGoogle Scholar
  23. Welzbacher CR, Wehsener J, Haller P, Rapp AO (2006) Biologische und mechanische Eigenschaften von verdichteter und thermisch behandelter Fichte (Picea abies). Holztechnologie 3:13–18 Google Scholar
  24. Welzbacher CR, Wehsener J, Rapp AO, Haller P (2008) Thermo-mechanical densification combined with thermal modification of Norway spruce (Picea abies Karst) in industrial scale-dimensional stability and durability aspects. Holz Roh Werkst 66:39–49 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Ghonche Rassam
    • 1
    Email author
  • Mohammad Ghofrani
    • 1
  • Hamid Reza Taghiyari
    • 1
  • Behnam Jamnani
    • 2
  • Mohamad Ali Khajeh
    • 1
  1. 1.Department of Wood Science and Technology, Faculty of Civil EngineeringShahid Rajaee Teacher Training UniversityTehranIran
  2. 2.Graduated Engineer in Natural Resources, Wood and Paper Science and TechnologyTehran UniversityTehranIran

Personalised recommendations