Skip to main content
Log in

The effects of boron compounds synergists with ammonium polyphosphate on mechanical properties and burning rates of wood-HDPE polymer composites

Einfluss von Borverbindungen als Zusatz zu Ammoniumpolyphosphat auf die mechanischen Eigenschaften und die Abbrandgeschwindigkeit von Holz-HDPE-Polymer-Verbundwerkstoffen

  • Originals Originalarbeiten
  • Published:
European Journal of Wood and Wood Products Aims and scope Submit manuscript

Abstract

The effects of boron compounds (BCs) utilization as synergists with ammonium polyphosphate (APP) on the mechanical and burning rate properties of wood polymer composites (WPCs) manufactured from wood flour, high density polyethylene, maleic anhydride-grafted polyethylene and flame retardants (FRs) at various ratios (APP, boric acid (BA), borax (BX) and BA/BX mixtures) by an extrusion method were tested. The results showed that all the additions to FRs reduced mechanical properties of WPCs except for impact strength, but the reduction was lower for samples which include BCs in FRs formulation. BCs act as synergists. Burning rate of all FRs added WPCs were similar. This study indicated that the use of BCs as synergists with APP will provide a relatively inexpensive, environmentally friendly and halogen-free FRs alternative to the industry. The experimental findings may be used to increase the use of BCs in FRs polymers and WPCs manufacturing.

Zusammenfassung

Der Einfluss von Bor-Verbindungen (BCs) als Zusatz zu Ammoniumpolyphosphat (APP) auf die mechanischen Eigenschaften und die Abbrandgeschwindigkeit von extrudierten Holz-Polymer-Verbundwerkstoffen (WPCs) aus Holzmehl, hochdichtem Polyethylen, mit Maleinsäureanhydrid und Flammschutzmitteln (FRs) mit verschiedenen Anteilen an APP, Borsäure (BA), Borax (BX) und Borsäure/Borax-Mischungen wurde untersucht. Die Ergebnisse zeigten, dass das Hinzufügen von Flammschutzmitteln (FRs), unabhängig von den jeweiligen Zusätzen die mechanischen Eigenschaften der WPCs, mit Ausnahme der Biegeschlagfestigkeit, reduzierte. Jedoch war die Reduzierung bei Proben mit BCs in den FRs Formulierungen geringfügiger. BCs wirken als Synergisten. Die Abbrandgeschwindigkeit aller WPCs mit FRs Zusätzen war ähnlich. Die Ergebnisse dieser Studie weisen darauf hin, dass der Zusatz von BCs als Synergisten zu APP relativ kostengünstige, umweltfreundliche und halogenfreie FRs Flammschutzmittel für die Industrie ermöglicht. Die experimentellen Ergebnisse können genutzt werden, um BCs vermehrt in FRs Polymeren und bei der Herstellung von WPCs einzusetzen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 Abb. 1
Fig. 2 Abb. 2
Fig. 3 Abb. 3
Fig. 4 Abb. 4
Fig. 5 Abb. 5
Fig. 6 Abb. 6

Similar content being viewed by others

References

  • American Society for Testing and Materials (1997) ASTM D635, Standard test method for rate of burning and/or extent and time of burning of plastic in a horizontal position. ASTM, West Conshohocken

    Google Scholar 

  • American Society for Testing and Materials (2001a) ASTM D638, Standard test method for tensile properties of plastics. ASTM, West Conshohocken

    Google Scholar 

  • American Society for Testing and Materials (2001b) ASTM D6662, Standard specification for polyolefin-based plastic lumber decking boards. ASTM, West Conshohocken

    Google Scholar 

  • American Society for Testing and Materials (2005a) ASTM D6109, Standard test methods for flexural properties of unreinforced and reinforced plastic lumber and related products. ASTM, West Conshohocken

    Google Scholar 

  • American Society for Testing and Materials (2005b) ASTM D256, Standard test methods for impact resistance of plastics and electrical insulating materials. ASTM, West Conshohocken

    Google Scholar 

  • American Society for Testing and Materials (2007) ASTM D792, Standard test method for density and specific gravity (relative density) of plastics by displacement. ASTM, West Conshohocken

    Google Scholar 

  • Baysal E, Yalinkilic MK, Colak M, Gonultas O (2003) Combustion properties of calabrian pine (pinus brutia ten.) wood treated with vegetable tanning extracts and boron compounds. Turk J Agric For 27:245–252

    Google Scholar 

  • Camino G, Costa L, Trossarelli L (1984) Study of the mechanism of intumescence in fire retardant polymers 2: Mechanism of action in polypropylene-ammonium polyphosphate pentaerythritol mixtures. Polym Degrad Stab 7:25–31

    Article  CAS  Google Scholar 

  • Chiang W, Hu HCH (2001) Phosphate-containing flame-retardant polymers with good compatibility to polypropylene 2: Effect of the flame retardant polymers on polypropylene. J Appl Polym Sci 82:2399–2403

    Article  CAS  Google Scholar 

  • Clariant (2008) Amonyum polyphosphate/exolit AP 422, Product data sheet. Clariant, Muttenz

    Google Scholar 

  • Clemons C (2002) Wood-plastic composites in the United States; the interfacing of two industries. For Prod J 52(6):10–18

    Google Scholar 

  • Green J (2000) Phosphorus-containing flame retardants. In: Grand AF, Wilkie CA (eds) Fire retardancy of polymeric materials. Dekker, New York, pp 147–170

    Google Scholar 

  • Hashim R, Dicckinson D, Murphy R, Dinwoodie J (1992) Effect of vapor boron treatment on mechanical properties of wood based board materials. The International Research Group on Wood Preservation, Document No: IRG/WP/3727-92, 17 pp

  • Horrocks AR (2001) Textiles. In: Horrocks AR, Price D (eds) Fire retardant materials. Woodhead Publishing Limited, Cambridge, pp 128–181

    Chapter  Google Scholar 

  • Jimenez M, Duquesne S, Bourbigot S (2006a) Characterization of the performance of an intumescent fire protective coating. Surf Coat Technol 201(3–4):979–987

    Article  CAS  Google Scholar 

  • Jimenez M, Duquesne S, Bourbigot S (2006b) Intumescent fire protective coating; toward a better understanding of their mechanism of action. Thermochim Acta 449(1–2):16–26

    Article  CAS  Google Scholar 

  • Kim HS, Yang HS, Kim HJ, Park HJ (2004) Thermogravimetric analysis of rice husk flour filled thermoplastic polymer composites. J Therm Anal Calorim 76(2):395–404

    Article  CAS  Google Scholar 

  • Klyosov AA (2007) Wood-plastic composites. Wiley-Interscience, Hoboken

    Book  Google Scholar 

  • Kurt R, Mengeloglu F (2008) The effect of boric acid/borax treatment on selected mechanical and combustion properties of poplar laminated veneer lumber. Wood Res 53(2):113–120

    CAS  Google Scholar 

  • Laks PE, Manning MJ (1995) Preservation of wood composites with zinc borate. The International Research Group on Wood Preservation Document No: IRG/WP/95-30074, 12 pp

  • Laks PE, Quan X, Palardy RD (1994) Preservative system for OSB Panels. Structural Board Association, Athens

    Google Scholar 

  • Le Bras M, Duquesne S, Fois M, Grisel M, Poutch F (2005) Intumescent polypropylene/flax blends: a preliminary study. Polym Degrad Stab 88:80–84

    Article  Google Scholar 

  • Li B, He JM (2004) Investigation of mechanical property, flame retardancy and thermal degradation of LLDPE-wood-fibre composites. Polym Degrad Stab 83:241–246

    Article  CAS  Google Scholar 

  • Li J, Li B, Zhang XC, Su RZ (2001) The study of flame retardants on the thermal degradation and charring process of Manchurian ash lignin in the condensed phase. Polym Degrad Stab 72:493–498

    Article  CAS  Google Scholar 

  • Mali J, Sarsama P, Suomi-Lindberg L, Metsä-Kortelainen S, Peltonen J, Vilkki M, Koto T, Tiisala S (2003) Woodfibre-plastic composites. VTT Technical Research Centre of Finland, Espoo

    Google Scholar 

  • Montaudo G, Scamporrino E, Puglisi C, Vitalini D (1985) Intumescent flame-retardant for polymers 3: The polypropylene-ammonium polyphosphate-polyurethane system. J Appl Polym Sci 30:1449–1460

    Article  CAS  Google Scholar 

  • Mosnacek J, Basfar AA, Shukri TM, Bahattab MA (2008) Polyethylene vinyl acetate/low density polyethylene/ammonium polyphosphate composites cross-linked by dicumyl peroxide for wire and cable applications. Polym J 40(5):460–464

    Article  CAS  Google Scholar 

  • Qui W, Endo T, Hirotsu T (2006) Structure and properties of composites of highly crystalline cellulose with polypropylene; effects of polypropylene molecular weight. Eur Polym J 42:1059–1068

    Article  Google Scholar 

  • SAS Institute (2001) SAS/STAT release 8.2. SAS Institute, Cary

    Google Scholar 

  • Tangram Technology Limited (2002) Wood-plastic composites: A technical review of materials, processes and applications. Tangram Technology Limited, Hitchin

    Google Scholar 

  • Wang FQ, Zhang ZJ, Wang QW, Tang JY (2007) Fire retardant and smoke-suppressant performance of an intumescent water-borne amino-resin fire retardant coating for wood. Sci Silvae Sin 43(12):117–121

    CAS  Google Scholar 

Download references

Acknowledgements

This research is supported by National Boron Institute under project number 2006-38-Ç-37-22. Contributions by Dr. M.H. Alma, Dr. N.S. Cetin, Dr. A. Tutus, Dr. A. Karademir and Mr. K. Karakus are appreciated. MAPE and APP were donated by Clariant, Turkey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Kurt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurt, R., Mengeloglu, F. & Meric, H. The effects of boron compounds synergists with ammonium polyphosphate on mechanical properties and burning rates of wood-HDPE polymer composites. Eur. J. Wood Prod. 70, 177–182 (2012). https://doi.org/10.1007/s00107-011-0534-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00107-011-0534-2

Keywords

Navigation