Abstract
The study used a physical and environmentally friendly method to enhance the properties of both veneer and plywood. The effect of pre-pressing process factors (pressure, temperature and time) on the compression ratio, surface roughness, tensile strength perpendicular-to-grain of rotary cut veneer sheets of birch (Betula pubescens), and on the shear strength of plywood made from these compressed veneer sheets were studied in laboratory tests. The effect of pressing factors (such as pressure and glue spread) on the properties of plywood made from pre-pressed veneer was also studied. Three-layer plywood panels were manufactured from pre-pressed and non-pre-pressed veneers using phenol formaldehyde glue resins. Test results revealed that the greatest influence on properties of veneer is the pre-pressing temperature followed by the pre-pressing pressure and pre-pressing time. Meanwhile, the veneer’s properties such as surface roughness can be improved, and the properties of plywood were also improved when the birch veneers were pre-pressed. Linear relationship between the compression ratio and surface roughness was found. The tensile strength of veneer was not significantly influenced by the pre-pressing factors. The pre-pressing temperature has the largest effect on shear strength of plywood. The initial veneer densification allows lowering both glue spread from 150 to 90 g/m2 (a 40% reduction) and pressing pressure from 1.8 to 1.0 MPa (a 45% reduction). The shear strength obtained for the tested plywood meets EN 314-1 requirements. It is expected that the results of this preliminary study will lead to new gluing approaches, which will result in significant performance improvements of veneer-based products.
Zusammenfassung
In dieser Studie wurde ein physikalisches und umweltfreundliches Verfahren zur Verbesserung der Eigenschaften von Furnier und Sperrholz verwendet. In Laborversuchen wurde der Einfluss der Parameter Druck, Temperatur und Dauer der Vorpressung auf das Verdichtungsverhältnis, die Oberflächenrauhigkeit, die Zugfestigkeit quer zur Faserrichtung von Birkenschälfurnieren (Betula pubescens) sowie die Scherfestigkeit von aus diesen verdichteten Furnieren hergestelltem Sperrholz untersucht. Der Einfluss der Herstellfaktoren (wie zum Beispiel Druck und Leimauftrag) auf die Eigenschaften von so hergestelltem Sperrholz wurde ebenfalls untersucht. Dreilagige Sperrholzplatten wurden aus vorgepressten und nicht vorgepressten Furnieren mittels Phenolformaldehydklebstoff hergestellt. Die Versuchsergebnisse zeigten, dass die Temperatur beim Vorpressen den größten Einfluss auf die Furniereigenschaften hat, gefolgt von Druck und Dauer der Vorpressung. Durch Vorpressen von Birkenfurnieren können die Furniereigenschaften wie zum Beispiel Oberflächenrauhigkeit sowie die Eigenschaften von Sperrholz verbessert werden. Es wurde eine lineare Beziehung zwischen Verdichtungsverhältnis und Oberflächenrauhigkeit gefunden. Die Vorpressbedingungen hatten keinen erkennbaren Einfluss auf die Zugfestigkeit der Furniere. Die Temperatur der Vorpressung hatte den größten Einfluss auf die Scherfestigkeit von Sperrholz. Mit der Vorverdichtung der Furniere ist es möglich, sowohl die Leimauftragsmenge von 150 auf 90 g/m2 (um 40 %) zu reduzieren als auch den Pressdruck von 1,8 auf 1,0 MPa (um 45 %) zu verringern. Die Scherfestigkeit des untersuchten Sperrholzes erfüllt die Anforderungen von EN 314-1. Es ist davon auszugehen, dass die Ergebnisse dieser orientierenden Untersuchung zu neuen Verfahren bei der Verklebung führen werden, die zu signifikanten Verbesserungen der Eigenschaften von Furnierwerkstoffen führen.
Similar content being viewed by others
References
Asako YH, Kamikoga H, Nishimura H, Yamaguchi Y (2002) Effective thermal conductivity of compressed woods. Int J Heat Mass Transf 45:2243–2253
Aydin I (2004) Activation of wood surfaces for glue bonds by mechanical pre-treatment and its effects on some properties of veneer surfaces and plywood panels. Appl Surf Sci 233:268–274
Back EL (1998) Oxidative activation of wood surfaces for glue bonding. For Prod J 41(2):30–36
Bekhta PA (2003) Method of the plywood production. Patent of Ukraine, No 62787A dated 15.12.03. Bulletin No 12
Bekhta PA, Marutzky R (2007) Reduction of glue consumption in the plywood production by using previously compressed veneer. Holz Roh-Werkst 65(1):87–88
Bekhta PA, Hiziroglu S, Shepelyuk OO (2009) Properties of plywood manufactured from compressed veneer as building material. Mater Des 30:947–953
Belfas J, Groves KW, Evans PD (1993) Bonding surface-modified Karri and Jarrah with resorcinol formaldehyde. I. The effect of sanding on wettability and shear strength. Holz Roh-Werkst 51:253–259
Christiansen AW (1991) How overdrying wood reduces its bonding to phenol-formaldehyde adhesives. A critical review of the literature. Part II. Chemical reactions. Wood Fiber Sci 23(1):69–84
Faust TD, Rice JT (1986) Effect of veneer surface roughness on glue bond in Southern Pine plywood. For Prod J 36(4):57–62
Gardner DJ, Elder TJ (1988) Surface activation treatment of wood and its effect on gel time of phenol-formaldehyde resin. Wood Fiber Sci 20(3):378–385
Jennings JD (1993) Bonding densified wood. I. ASC/CASS Undergrad Research Report, Center for Adhesive and Sealant Science, Virginia Tech, Blacksburg, Virginia
Jennings JD, Zink-Sharp A, Kamke FA, Frazier CE (2005) Properties of compression densified wood. Part 1: Bond performance. J Adhes Sci Technol 19(13–14):1249–1261
Jennings JD, Zink-Sharp A, Frazier CE, Kamke FA (2006) Properties of compression densified wood. Part 2: Surface energy. J Adhes Sci Technol 20(4):335–344
Kamke FA (2006) Densified radiate pine for structural composites. MADERAS. Cienc Technol 8(2):83–92
Kamke F (2007) Laminated composites from densified wood. In: Bonding of modified wood. Proceedings of the 5th COST E34 international workshop, Bled, Slovenia
Khukhryanskyy P (1964) Compression of Wood. Liesnaya promyshlennost’, Moscow, 351 p
Kollmann FP, Kuenzi EW, Stamm AJ (1975) Principles of wood science and technology. Vol. II: Wood-based materials. Springer, New York, pp 139–149
Kutnar A, Kamke FA, Nairn JA, Sernek M (2008a) Mode II fracture behaviour of bonded viscoelastic thermal compressed wood. Wood Fiber Sci 40(3):362–373
Kutnar A, Kamke FA, Sernek M (2008b) The mechanical properties of densified VTC wood relevant for structural composites. Holz Roh-Werkst 66(6):439–446
Kutnar A, Kamke FA, Sernek M (2009) Density profile and morphology of viscoelastic thermal compressed wood. Wood Sci Technol 43:57–68
Pizzi A, Mittal KL (2003) Handbook of adhesive technology, 2nd edn. Dekker, New York
Sernek M, Kamke FA, Glasser WG (2004) Comparative analysis of inactivated wood surfaces. Holzforschung 58:22–31
Walters EO (1973) The effects of green veneer water content dryer schedules, and wettability on gluing results for southern pine veneer. For Prod J 23(6):46–53
Acknowledgements
The authors are grateful to the Slovak grant agency APVV, project No. SK-UA-0026-09 for financial support and this work was also processed in the frame of the projects No. 1/0517/09 and No. 1/0565/10 as the result of author’s research at significant help of VEGA agency, Slovakia.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Bekhta, P., Niemz, P. & Sedliacik, J. Effect of pre-pressing of veneer on the glueability and properties of veneer-based products. Eur. J. Wood Prod. 70, 99–106 (2012). https://doi.org/10.1007/s00107-010-0486-y
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00107-010-0486-y