Skip to main content
Log in

Shorea dasyphylla sawdust for humic acid sorption

Shorea dasyphylla Sägemehl zur Huminsäure-Sorption

  • Originals Originalarbeiten
  • Published:
European Journal of Wood and Wood Products Aims and scope Submit manuscript

Abstract

The efficacy of Shorea dasyphylla sawdust as an adsorbent for the removal of humic acid from aqueous solution was investigated as a function of pH value, agitation period, agitation rate, initial humic acid concentration and adsorbent dosage. The equilibrium nature of humic acid adsorption was described by the Langmuir, Freundlich and BET isotherms. The experimental adsorption data was best fitted to the Langmuir adsorption model, which gave adsorption capacity of 68.4 mg humic acid adsorbed per gram Shorea dasyphylla sawdust at pH 2.0 and initial humic acid concentration of 80 mg L-1. Kinetic studies indicated that the sorption process followed the pseudo-second-order kinetic model. It was revealed that after three cycles of adsorption and desorption, Shorea dasyphylla sawdust retained its promising adsorption ability. With an initial amount of 73.5 mg humic acid adsorbed per gram sawdust, more than 80% of humic acid desorbed by using 0.1 M HCl. Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) were employed to study the mechanism of the removal of humic acid. From the dimensionless factor, RL data, it was determined that the adsorption of humic acid onto untreated Shorea dasyphylla sawdust was favourable.

Zusammenfassung

Untersucht wurde die Wirksamkeit von Shorea dasyphylla Sägemehl als Adsorbens zur Entfernung von Huminsäure aus wässriger Lösung in Abhängigkeit vom pH-Wert, der Rührdauer, der Rührgeschwindigkeit, der Anfangskonzentration der Huminsäure und der Adsorbensdosierung. Der Gleichgewichtszustand von Huminsäure-Adsorption wurde mittels den Langmuir-, Freundlich- und BET-Isothermen beschrieben. Die Versuchsdaten konnten am besten durch das Langmuir-Modell beschrieben werden. Es ergab sich eine Adsorptionskapazität von 68.4 mg adsorbierter Huminsäure pro Gramm Shorea dasyphylla Sägemehl bei einem pH-Wert von 2.0 und einer Huminsäure-Anfangskonzentration von 80 mg/L. Kinetische Untersuchungen ergaben, dass der Sorptionsprozess dem kinetischen Modell pseudo-zweiter Ordnung folgte. Es zeigte sich, dass Shorea dasyphylla Sägemehl nach drei Adsorptions-Sorptions-Zyklen seine potentiell gute Adsorptionsfähigkeit bewahrt hatte. Die adsorbierte Menge von 73.5 mg Huminsäure pro Gramm Sägemehl, wurde zu über 80% mittels 0.1 M HCl desorbiert. Mittels Fourier-Transformations-Infrarot-Spektroskopie (FTIR) und Rasterelektronenmikroskopie (REM) wurde der Mechanismus der Entfernung von Huminsäure untersucht. Mit dem dimensionslosen Faktor RL wurde die erfolgreiche Adsorption von Huminsäure an unbehandeltes Shorea dasyphylla Sägemehl nachgewiesen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acemioglu B, Alma MH (2001) Equilibrium studies on adsorption of Cu(II) from aqueous solution onto cellulose. J Colloid Interf Sci 243:81–84

    Article  CAS  Google Scholar 

  2. Ahmad A, Rafatullah M, Danish M (2007) Sorption studies of Zn(II) and Cd(II) ions from aqueous solution on treated sawdust of sissoo wood. Holz Roh Werkst 65:429–436

    Article  CAS  Google Scholar 

  3. Ajmal M, Rao RAK, Anwar S, Ahmad J, Ahmad R (2003) Adsorption studies on rice husk: removal and recovery of Cd(II) from wastewater. Bioresour Technol 86:147–149

    Article  CAS  PubMed  Google Scholar 

  4. Albers CN, Banta GT, Hansen PE, Jacobsen OS (2008) Effect of different of humic substances on the fate of diuron and its main metabolite 3,4-dichloroaniline in soil. Environ Sci Technol 42:8687–8691

    Article  CAS  PubMed  Google Scholar 

  5. Anirudhan TS, Suchithra PS, Rijith S (2008) Amine-modified polyacrylamide-bentonite composite for the adsorption of humic acid in aqueous solutions. Colloids Surf A 326:147–156

    Article  CAS  Google Scholar 

  6. Babarinde NAA, Bebalola JO, Sanni RA (2006) Biosorption of lead ions from aqueous solution by maize leaf. Int J Phys Sci 1:23–26

    Google Scholar 

  7. Baral SS, Das SN, Rath P (2006) Hexavalent chromium removal from aqueous solution by adsorption on treated sawdust. Biochem Eng J 31:216–222

    Article  CAS  Google Scholar 

  8. Bulut Y, Tez Z (2007) Removal of heavy metals from aqueous solution by sawdust adsorption. J Env Sci 19:160–166

    Article  CAS  Google Scholar 

  9. Chiou MS, Chuang GS (2006) Competitive adsorption of dye metanil yellow and RB15 in acid solutions on chemically cross-linked chitosan beads. Chemosphere 62:731–740

    Article  CAS  PubMed  Google Scholar 

  10. Chiou MS, Li HY (2003) Adsorption behaviour of reactive dye in aqueous solution on chemical cross-linked chitosan beads. Chemosphere 50:1095–1105

    Article  CAS  PubMed  Google Scholar 

  11. Dabrowski A (2001) Adsorption – from theory to practice. Adv Colloid Interface Sci 93:135–224

    Article  CAS  PubMed  Google Scholar 

  12. Daifullah AAM, Girgis BS, Gad HMH (2004) A study of the factors affecting the removal of humic acid by activated carbon prepared from biomass material. Colloids Surf A 235:1–10

    Article  CAS  Google Scholar 

  13. Garg VK, Gupta R, Kumar G, Gupta RK (2004) Adsorption of chromium from aqueous solution on treated sawdust. Bioresour Technol 92:79–81

    Article  CAS  PubMed  Google Scholar 

  14. Gasser MS, Mohsen HT, Aly HF (2008) Humic acid adsorption onto Mg/Fe layered double hydroxide. Colloids Surf A 331:195–201

    Article  CAS  Google Scholar 

  15. Gezici O, Kara H, Ersöz M, Abali Y (2005) The sorption behaviour of nickel-insolubilized humic acid system in a column arrangement. J Colloid Interf Sci 292:381–391

    Article  CAS  Google Scholar 

  16. Gezici O, Kara H, Yanik S, Ayyildiz HF, Kucukkolbasi S (2007) Investigating sorption characteristics of copper ions onto insolubilized humic acid by using a continuously monitored solid phase extraction technique. Colloids Surf A 298:129–138

    Article  CAS  Google Scholar 

  17. Hanafiah MAKM, Shafiei S, Harun MK, Yahya MZA (2006) Kinetic and thermodynamic study of Cd2+ adsorption onto rubber tree (Hevea brasiliensis) leaf powder. Mater Sci Forum 517:217–221

    Article  CAS  Google Scholar 

  18. Havelcová M, Mizera J, Sýkorová I, Pekaø M (2009) Sorption of metal ions on lignite and the derived humic substances. J Hazard Mater 161:559–564

    Article  PubMed  Google Scholar 

  19. Johnson PD, Watson MA, Brown J, Jefcoat IA (2002) Peanut hull pellets as a single use sorbent for the capture of Cu(II) from wastewater. Waste Manage 22:471–480

    Article  CAS  Google Scholar 

  20. Jones MN, Bryan ND (1998) Colloidal properties of humic substances. Adv Colloid Interf Sci 78:1–48

    Article  CAS  Google Scholar 

  21. Kalavathy MH, Karthikeyan T, Rajgopal S, Miranda LR (2005) Kinetic and isotherm studies of Cu(II) adsorption onto H3PO4-activated rubber wood sawdust. J Colloid Interf Sci 292:354–362

    Article  CAS  Google Scholar 

  22. Larous S, Meniai AH, Lehocine MB (2005) Experimental study of the removal of copper from aqueous solutions by adsorption using sawdust. Desalination 185:483–490

    Article  CAS  Google Scholar 

  23. Mall ID, Srivastava VC, Kumar GVA, Mishra IM (2006) Characterization and utilization of mesoporous fertilizer plant waste carbon for adsorptive removal of dyes from aqueous solution. Colloids Surf A 278:175–187

    Article  CAS  Google Scholar 

  24. Peng X, Luan Z, Zhang H (2006) Montmorillonite-Cu(II)/Fe(III) oxides magnetic material as adsorbent for removal of humic acid and its thermal regeneration. Chemosphere 63:300–306

    Article  CAS  PubMed  Google Scholar 

  25. Saeed A, Akhter MW, Iqbal M (2005) Removal and recovery of heavy metals from aqueous solution using papaya wood as a new biosorbent. Sep Purif Technol 45:25–31

    Article  CAS  Google Scholar 

  26. Sa~g Y, Aktay Y (2000) Mass transfer and equilibrium studies for the sorption of chromium ions onto chitin. Process Biochem 36:157–173

    Article  CAS  Google Scholar 

  27. Sa~g Y, Aktay Y (2002) Kinetic studies on sorption of Cr(VI) and Cu(II) ions by chitin, chitosan and Rhizopus arrhizus. Biochem Eng J 12:143–153

    Article  CAS  Google Scholar 

  28. Salman M, El-Eswed B, Khalili F (2008) Adsorption of humic acid on bentonite. Appl Clay Sci 38:51–56

    Article  Google Scholar 

  29. Shukla SS, Yu LJ, Dorris KL, Shukla A (2005) Removal of nickel from aqueous solution by sawdust. J Hazard Mater B 121:243–246

    Article  CAS  Google Scholar 

  30. Suksabye P, Thiravetyan P, Nakbanpote W, Chayabutra S (2007) Chromium removal from electroplating wastewater by coir pith. J Hazard Mater 141:637–644

    Article  CAS  PubMed  Google Scholar 

  31. Sun G, Xu X (1997) Sunflower stalks as adsorbents for color removal from textile wastewater. Ind Eng Chem Res 36:808–812

    Article  CAS  Google Scholar 

  32. Vermeer AWP, Riemsdijk WHV, Koopal LK (1998) Adsorption of humic acid to mineral particles. 1. Specific and electrostatic interactions. Langmuir 14:2810–2819

    Article  CAS  Google Scholar 

  33. Villaescusa I, Fiol N, Martínez M, Miralles N, Pocj J, Serarols J (2004) Removal of copper and nickel ins from aqueous solutions by grape stalks waste. Water Res 38:992–1002

    Article  CAS  PubMed  Google Scholar 

  34. Wan Ngah WS, Hanafiah MAKM, Yong SS (2008) Adsorption of humic acid from aqueous solutions on crosslinked chitosan-epichlrorohydrin beads: Kinetics and isotherms studies. Colloids Surf B 65:18–24

    Article  CAS  Google Scholar 

  35. Wan Ngah WS, Kamari A, Fatinathan S, Ng PW (2006) Adsorption of chromium from aqueous solution using chitosan beads. Adsorption 12:249–257

    Article  Google Scholar 

  36. Wan Ngah WS, Musa A (1998) Adsorption of humic acid onto chitin and chitosan. J Appl Polym Sci 69:2305–2310

    Article  CAS  Google Scholar 

  37. Wang S, Sun X, Liu X, Gong W, Gao B, Bao N (2008a) Chitosan hydrogel beads for fulvic acid adsorption: Behaviors and mechanism. Chem Eng J 142:239–247

    Article  CAS  Google Scholar 

  38. Wang S, Terdkiatburana T, Tadé MO (2008b) Single and co-adsorption of heavy metals and humic acid on fly ash. Sep Purif Technol 58:353–358

    Article  CAS  Google Scholar 

  39. Wang S, Zhu ZH (2007) Humic acid adsorption on fly ash and its derived unburned carbon. J Colloid Interface Sci 315:41–46

    Article  CAS  PubMed  Google Scholar 

  40. Yan YL, Bai R (2005) Adsorption of lead and humic acid on chitosan hydrogel beads. Water Res 39:688–698

    Article  CAS  PubMed  Google Scholar 

  41. Zhao L, Luo F, Wasikiewicz JM, Mitomo H, Nagasawa N, Yagi T, Tamada M, Yoshii F (2008) Adsorption of humic acid from aqueous solution onto irradiation crosslinked carboxymethylchitosan. Bioresour Technol 99:1911–1917

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kamari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamari, A., Wan Ngah, W.S. & Wong, L.W. Shorea dasyphylla sawdust for humic acid sorption . Eur. J. Wood Prod. 67, 417–426 (2009). https://doi.org/10.1007/s00107-009-0336-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00107-009-0336-y

Keywords

Navigation