Skip to main content

Advertisement

SpringerLink
Use of alkyl ketene dimer (AKD) for surface modification of particleboard chips
Download PDF
Download PDF
  • Originalarbeiten Originals
  • Open Access
  • Published: 28 August 2008

Use of alkyl ketene dimer (AKD) for surface modification of particleboard chips

Die Verwendung von Alkylketendimer (AKD) zur Oberflächenmodifizierung von Spänen für die Herstellung von Spanplatten

  • Ulrich Hundhausen1,
  • Holger Militz1 &
  • Carsten Mai1 

European Journal of Wood and Wood Products volume 67, pages 37–45 (2009)Cite this article

  • 4450 Accesses

  • 24 Citations

  • Metrics details

Abstract

The study objective was to impart urea-formaldehyde (UF) bonded particleboards higher and longer-lasting hydrophobicity than that resulting from conventionally used paraffin. Alkyl ketene dimer (AKD) is a paper sizing agent that can theoretically esterify wood compounds and result in a surface modification. Particles were 1) impregnated with an aqueous AKD-solution and cured at 130 °C prior to gluing, or 2) sprayed with a mixture of AKD-solution and UF-resin in a single step. Boards with and without paraffin wax were used as controls. Thickness swelling after 2, 24, and 48 h immersion was decreased by 90, 62, and 59% when the chips were impregnated with AKD in comparison to untreated control boards. Water uptake after 2, 24, and 48 h was reduced by 91, 75, and 60%. AKD-impregnation with subsequent curing decreased the internal bond strength by 53%, indicating that AKD impedes the adhesion. The mixture of AKD and UF-glue did not result in considerable hydrophobicity. Increased methyl/methylene and carbonyl bands in FTIR-spectra after toluene-extraction suggest that AKD partially formed ester bonds at the wood surface.

Zusammenfassung

Das Ziel der Untersuchung bestand darin, Harnstoff-Formaldehyd (UF) gebundene Spanplatten stärker und dauerhafter zu hydrophobieren als es mit konventionell verwendeten Paraffinprodukten möglich ist. Alkylketendimer (AKD) wird in der Papierindustrie als Masseleimungsmittel eingesetzt und kann theoretisch mit Zellwandbestandteilen Esterbindungen eingehen. Holzspäne wurden 1) mit einer wässrigen AKD Lösung imprägniert und bei 130 °C getrocknet oder 2) mit einer AKD/UF-Harz Lösung besprüht. Platten mit und ohne Paraffinbehandlung dienten als Referenzen. Im Vergleich zu Platten ohne Hydrophobierungsmittel wiesen Platten aus AKD-imprägnierten Spänen nach 2-, 24- und 48-stündiger Wasserlagerung eine um 90, 62 und 59% verminderte Dickenquellung auf. Die Wasseraufnahme wurde um 91, 75 und 60% reduziert. Die AKD Imprägnierung führte zu einer Verringerung der Querzugfestigkeit um 53%. Dies deutet darauf hin, dass AKD die Verklebbarkeit negativ beeinflusst. Die Anwendung von AKD im Untermischverfahren führte nur zu geringer Hydrophobierung. FTIR Messungen an Furnierstreifen vor und nach einer Toluolextraktion wiesen darauf hin, dass ein Teil des AKD über Esterbindungen auf der Holzoberfläche fixiert ist.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. Amthor J (1972) Paraffindispersionen zur Hydrophobierung von Spanplatten – Paraffin dispersions for the waterproofing of particle board. Holz Roh- Werkst 30(11):422–429

    CAS  Google Scholar 

  2. Amthor J, Böttcher P (1984) Einfluß der Hydrophobierung auf das Verhalten von Spanplatten-Oberflächen bei kurzzeitiger Wassereinwirkung. Holz Roh- Werkst 42(10):379–383

    Article  CAS  Google Scholar 

  3. Boonstra MJ, Pizzi A, Ohlmeyer M, Paul W (2006) The effects of a two stage heat treatment process on the properties of particleboard. Holz Roh- Werkst 64(2):157–164

    Article  CAS  Google Scholar 

  4. Davis JW, Robertson WH, Weisgerber CA (1956) A new sizing agent for paper – Alkylketene dimers. Tappi 39(1):21–23

    CAS  Google Scholar 

  5. Fengel D, Wegener G (1984) Wood: Chemistry, Ultrastructure, Reactions. De Gruyter, Berlin New York

    Google Scholar 

  6. Filcock KM, Vinden P (2000) Treatment of particleboard with isocyanate resin to impart improved dimensional stability and water repellency. International Research Group on Wood Preservation (Doc no: IRG/WP 00-40178), IRG Secretary Stockholm, Sweden

  7. Gruber E, Weigert J (1998) Chemische Modifizierung von Zellstoffen zur Verminderung ihrer Verhornungsneigung – Chemical modification of pulp to reduce its hornification tendency. Papier 52:20–26

    Google Scholar 

  8. Haaligan AF (1970) A review of thickness swelling in particleboard. Wood Sci Technol 4(4):301–312

    Article  Google Scholar 

  9. Hergert HL (1971) Infrared spectra. In: Sarkanen KV, Ludwig CH (eds) Lignins – occurrence, formation, structure and reactions, 1st edn. Wiley-Interscience, New York, pp 267–297

    Google Scholar 

  10. Hill C (2006) Wood modification – chemical, thermal and other processes. John Wiley & Sons, Ltd, West Sussex

    Google Scholar 

  11. Hubbe MA (2006) Paper’s resistance to wetting – A review of internal sizing chemicals and their effects. BioResources 2(1):106–145

    Google Scholar 

  12. Kajita H, Imamura Y (1991) Improvement of physical and biological properties of particleboards by impregnation with phenolic resin. Wood Sci Technol 26(1):63–70

    Article  CAS  Google Scholar 

  13. Karademir A (2002) Quantitative determination of alkyl ketene dimer (AKD) retention in paper made on a pilot paper machine. Turk J Agric For 26:253–260

    CAS  Google Scholar 

  14. Kollmann F, Fengel D (1965) Änderungen der chemischen Zusammensetzung von Holz durch thermische Behandlung. Holz Roh- Werkst 23:461–468

    CAS  Google Scholar 

  15. Lindström T, Söderberg G (1986) On the mechanism of sizing with alkylketene dimers. Part 1: Studies on the amount of alkylketene dimer required for sizing differnt pulps. Nord Pulp Pap Res J 1(1):26

    Article  Google Scholar 

  16. Müller H (1962) Erfahrungen mit Paraffin-Emulsionen als Quellschutzmittel in der Spanplattenindustrie. Holz Roh- Werkst 20(11):434–437

    Article  Google Scholar 

  17. Myers GE (1983) Use of acid scavengers to improve durability of acid-catalyzed adhesive wood bonds. For Prod J 33(4):49–57

    CAS  Google Scholar 

  18. Neimo L (1999) Papermaking chemistry. Technical Association of the Pulp and Paper Industry, Fapet Oy Helsinki

    Google Scholar 

  19. Newman RH, Hemmingson JA (1997) Cellulose cocrystallization in hornification of kraft pulp. 9th international symposium of wood and pulp chemistry, Montréal

  20. Okino EYA, Souza MRD, Santana MAE, Alves MVdS, Sousa MED, Teixeira DE (2004) Evaluation of the physical and biological properties of particleboard and flakeboard made from Cupressus spp. Intern biodeterior biodegrad 53(1):1–5

    Article  Google Scholar 

  21. Packham DE (2003) The mechanical theory of adhesion. In: Pizzi A, Mittal KL (eds) Handbook of adhesive technology, 2nd edn. CRC Press, Boca Raton London New York, pp 53–67

    Google Scholar 

  22. Papadopoulos AN, Gkaraveli A (2003) Dimensional stabilisation and strength of particleboard by chemical modification with propionic anhydride. Holz Roh- Werkst 61(2):142–144

    Article  CAS  Google Scholar 

  23. Quillin DT, Caulfield DF, Koutsky JA (1992) Cellulose/Polypropylene Composites: The use of AKD and ASA sizes as compatibilizers. Int J Polym Mater 17(3–4):215–227

    Article  CAS  Google Scholar 

  24. Roffael E (1989) Abgabe von flüchtigen organischen Säuren aus Holzspänen und Holzspanplatten. Holz Roh- Werkst 47:447–452

    Article  CAS  Google Scholar 

  25. Rowell RM (2005) Handbook of wood chemistry and wood composites. CRC Press, Boca Raton London New York Singapore

    Google Scholar 

  26. Rowell RM, Tillman A-M, Zhengtian L (1986) Dimensional stabilization of flakeboard by chemical modification. Wood Sci Technol 20(1):83–95

    Article  CAS  Google Scholar 

  27. Schultz J, Nardin M (2003) Theories and mechanism of adhesion. In: Pizzi A, Mittal KL (eds) Handbook of adhesive technology, 2nd edn. CRC Press, Boca Raton London New York, pp 53–67

    Google Scholar 

  28. Scott KA (2001) Economic feasibility of implementing a resin distribution measurement system for MDF fiber. Master thesis. Faculty of Virginia Polytechnic and State University. Blacksburg

  29. Seppänen R (2007) On the internal sizing mechnisms of paper with AKD and ASA to surface chemistry, wettability and friction. Dissertation. KTH, Royal Institute of Technology. Stockholm

  30. Subiyanto B, Yusuf S, Kawai S, Imamura Y (1989) Particleboard from acetylated Albizzia particles I: The effect of acetyl weight gain on mechanical properties and dimensional stability. Mokuzai Gakkaishi 35(5):412–418

    CAS  Google Scholar 

  31. Suttie ED, Hill CAS, Jones D, Orsler RJ (1998) Chemically modified solid wood. I. The resistance to fungal attack. Mater Organismen 32(3):159–182

    CAS  Google Scholar 

  32. Tomek A (1966) Die Heißvergütung von Holzspänen, ein neues Verfahren zum Hydrophobieren von Spanplatten. Holztechnologie 7(3):157–160

    Google Scholar 

  33. Tomimura Y, Matsuda T (1986) Particleboard made of steamed flakes. Mokuzai Gakkaishi 32(2):170–175

    Google Scholar 

  34. Wei S, Feng X, Parker IH (2002) The effect of the melting of AKD and its corresponding ketone on spreading behaviour. Appita J 55:375–381

    Google Scholar 

  35. Wilson JB, Krahmer RL (1976) Particleboard – Microscopic observations of resin distribution and board fracture. For Prod J 26(11):42–45

    Google Scholar 

  36. Youngquist JA (1999) Wood-based composites and panel products. General technical report FPL; GTR-113, Service UF, Forest Products Laboratory, 10.11–10.31

  37. Youngquist JA, Rowell RM (1986) Mechanical properties and dimensional stability of acetylated aspen flakeboard. Holz Roh- Werkst 44:453–457

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Wood Biology and Wood Products, Burckhardt Institute, Georg-August University Göttingen, Büsgenweg 4, 37077, Göttingen, Germany

    Ulrich Hundhausen, Holger Militz & Carsten Mai

Authors
  1. Ulrich Hundhausen
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Holger Militz
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Carsten Mai
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Ulrich Hundhausen.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Hundhausen, U., Militz, H. & Mai, C. Use of alkyl ketene dimer (AKD) for surface modification of particleboard chips . Eur. J. Wood Prod. 67, 37–45 (2009). https://doi.org/10.1007/s00107-008-0275-z

Download citation

  • Published: 28 August 2008

  • Issue Date: February 2009

  • DOI: https://doi.org/10.1007/s00107-008-0275-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Water Repellency
  • Weight Percent Gain
  • Control Board
  • Alkyl Ketene Dimer
  • Internal Bond Strength
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.