Skip to main content
Log in

Weathering of uncoated and coated wood treated with methylated 1,3-dimethylol-4,5-dihydroxyethyleneurea (mDMDHEU)

Bewitterung von unbeschichtetem und beschichtetem Holz behandelt mit methyliertem 1,3-Dimethylol-4,5-dihydroxyethylenharnstoff (mDMDHEU)

  • Originalarbeiten Originals
  • Published:
Holz als Roh- und Werkstoff Aims and scope Submit manuscript


Scots pine (Pinus silvestris L.) sapwood panels were treated with a methylated 1,3-dimethylol-4,5-dihydroxyethyleneurea (mDMDHEU) causing weight gains of approx. 25% and were exposed to weathering for 18 months. Compared to untreated panels, treatment with mDMDHEUreduced surface discoloration mainly caused by staining fungi. Panels treated with mDMDHEU clearly exhibited lower moisture content throughout the exposure time and lower water uptake in periodical submersion tests. The treatment also reduced deformation (cupping) and crack formation of the panels due to weathering (assessed as waviness and surface roughness).

When coated panels were compared, a pre-treatment with mDMDHEU resulted in lower water uptake in periodical submersion tests, less discoloration, minor deformation (cupping) and less crack formation (assessed as waviness and surface roughness). Oil-based coatings did not peel off the mDMDHEU treated panel surfaces as observed for the untreated panel surfaces.


Kiefersplintholzbretter (Pinus silvestris L.) wurden mit einem methylierten 1,3-Dimethylol-4,5-dihydroxyethylenharnstoff (mDMDHEU) behandelt, wobei sich eine Gewichtszunahme von etwa 25% ergab. Die Bretter wurden über 18 Monate der Bewitterung ausgesetzt. Im Vergleich zu unbehandelten Brettern führte eine Behandlung mit mDMDHEU zu einer Verminderung der von Pilzen verursachten Oberflächenverfärbung. Bretter, die mit mDMDHEU behandelt wurden, zeigten über den gesamten Bewitterungszeitraum hinweg deutlich niedrigere Feuchten und niedrigere Wasseraufnahmen bei periodisch durchgeführten Tauchtests. Die Behandlung reduzierte außerdem die Verformung (Schüsseln) und die Rissbildung der Bretter infolge der Bewitterung (gemessen als Welligkeit und Oberflächenrauhigkeit).

Bei beschichteten Brettern ergab die Vorbehandlung mit mDMDHEU eine geringere Wasseraufnahme bei periodisch durchgeführten Tauchtests, eine geringere Verfärbung, weniger Verformung (Schüsseln) und eine geringere Rissbildung (gemessen als Welligkeit und Oberflächenrauhigkeit). Bei ölbasierenden Beschichtungen kam es bei den DMDHEUbehandeltenBrettern nicht zum Abblättern wie dies auf den Oberflächen der unbehandelten Bretter zu beobachten war.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. Ahola P (1991) Moisture transport in wood coated with joinery paints. Holz Roh- Werkst 49:428–432

    Article  CAS  Google Scholar 

  2. Andrews BAK, TraskMorrell BJ (1997) Long term formaldehyde emissions from DMDHEU-finished cotton fabrics. Textile Chemist Colorist 29(6):16–19

    CAS  Google Scholar 

  3. Beckers EPJ, de Meijer M, Militz H (1998) Performance of finishes on wood that is chemically modified by acetylation. J Coat Technol 79(878):59–67

    Article  Google Scholar 

  4. Black JM, Mraz EA (1974) Inorganic surface treatments for weather-resistant natural finishes. Res Pap FPL-232. USDA Forest Serv, Forest Prod Lab, Madison, Wis, pp 39

  5. Chang ST, Hon DN-S, Feist WC (1982) Photodegradation and photoprotection of wood surfaces. Wood Fiber Sci 14(2):104–117

    CAS  Google Scholar 

  6. de Meijer M, Militz H (2000) Moisture transport in coated wood. Part 1: Analysis of sorption rates and moisture content profiles in spruce during liquid water uptake. Holz Roh- Werkst 58:354–362

    Article  Google Scholar 

  7. DIN 4768 (1990) Determination of roughness parameters Ra, Rz, Rmax by means of stylus instruments; terms, measuring conditions

  8. Eaton RA, Hale MDC (1993) Wood: decay, pests and protection. 1st edn. Chapman & Hall, London

    Google Scholar 

  9. EN 927-3 (2006) Beschichtungsstoffe – Beschichtungsstoffe und Beschichtungssysteme für Holz im Außenbereich – Teil 3: Freibewitterung

  10. Evans PD (2008) Weathering and photoprotection of wood. In: Schultz TP, Militz H, Freeman MH, Goodell B, Nicholas DD (eds) Development of commercial wood preservatives: efficacy, environmental, and health issues. ACS Am Chem Soc 982:69–119

  11. Evans PD, Schmalzl KJ (1989) A quantitative weathering study of wood surfaces modified by chromium VI and iron III compounds. Part I. Loss in zero-span tensile strength and weight of thin wood veneers. Holzforschung 43:289–292

    CAS  Google Scholar 

  12. Evans PD, Schmalzl KJ (1994) A quantitative weathering study of wood surfaces modified by chromium VI and iron III compounds. Part II. Image analysis of cell wall pit micro-checking. Holzforschung 48:331–336

    CAS  Google Scholar 

  13. Evans PD, Thay PD, Schmalzl KJ (1996) Degradation of wood surfaces during natural weathering. Effects on lignin and cellulose and on the adhesion of acrylic latex primers. Wood Sci Technol 30:411–422

    Article  CAS  Google Scholar 

  14. Evans PD, Wallis AFA, Owen NL (2002) Weathering of chemically modified wood surfaces. Natural weathering of Scots pine acetylated to different weight gains. Wood Sci Technol 34:151–165

    Article  Google Scholar 

  15. Feist WC (1979) Protection of wood surfaces with chromium trioxide. Res Pap FPL-339. USDA Forest Serv, Forest Prod Lab, Madison, Wis, pp 11

  16. Feist WC (1982) Weathering of wood in structural uses. In: Meyers R, Kellogg R (eds) Structural uses of wood in adverse environments. Van Nostrand Reinhold Company, New York, pp 156–178

    Google Scholar 

  17. Feist WC (1990) Outdoor wood weathering and protection. In: Rowell RM, Barbour JR (eds) Archaeological wood: properties, chemistry, and preservation. American Chemical Society, Washington, DC

    Google Scholar 

  18. Feist WC, Ross AS (1989) Performance of surface finishes over CCA-treated wood. In: Executive summaries, 43rd annual FPS meeting, Reno, NV, Madison, Wisconsin: Forest Research Society, pp 4–5

  19. Feist WC, Ross AS (1995) Performance and durability of finishes on previously coated CCA-treated wood. Forest Prod J 45(9):29–36

    CAS  Google Scholar 

  20. Hill CAS (2006) Wood modification: chemical, thermal and other processes. John Wiley & Sons Ltd., Chichester

    Google Scholar 

  21. Hon DN-S (1981) Photochemical degradation of lignocellulosic materials. In: Grassi N (ed) Developments in Polymer Degradation. Applied Science Publishers, London, pp 229–281

    Google Scholar 

  22. Hon DN-S (2001) Weathering and photochemistry of wood. In: Hon DN-S, Shiraishi N (eds) Wood and cellulose chemistry. Marcel Dekker, New York, pp 513–546

    Google Scholar 

  23. Hon DN-S, Feist WC (1981) Free radical formation in wood: the role of water. Wood Sci 14(1):41–47

    CAS  Google Scholar 

  24. ISO 4628-4 (1982) Paints and varnishes – Evaluation of degradation of paint coatings – Designation of intensity, quantity and size of common types of defect. Part 4: Designation of degree of cracking

  25. Jämsä S, Ahola P, Viitaniemi P (2000) Long-term natural weathering of coated thermowood. Pigm Resin Technol 29(2):68–74

    Article  Google Scholar 

  26. Krause A, Jones D, van der Zee M, Militz H (2003) Interlace treatment-wood modification with N-methylol compounds. In: Van Acker J, Hill CAS (eds) Proceedings of the First European Conference on Wood Modification. Ghent, Belgium, pp 317–327

  27. Militz H (1993) Treatment of timber with water soluble dimethylol resins to improve their dimensional stability and durability. Wood Sci Technol 27:347–355

    Article  CAS  Google Scholar 

  28. Miller ER, Boxall J (1984) The effectiveness of end-grain sealers in improving paint performance on softwood joinery. Holz Roh- Werkst 42:27–34

    Article  CAS  Google Scholar 

  29. Miniutti VP (1967) Microscopic observations of ultraviolet irradiated and weathered softwood surfaces and clear coatings. Res Pap FPL 74. Madison, WI: US Department of Agriculture, Forest Service, Forest Products Laboratory

  30. Miniutti VP (1973) Contraction in softwood surfaces during ultraviolet irradiation and weathering. J Paint Technol 45:27–34

    Google Scholar 

  31. Nienhuis JG, van de Velde B, Cobben WNH, Beckers EPJ (2003) Exterior durability of coatings on modified wood. In: Van Acker J, Hill CAS (eds) Proceedings of first European Conference on Wood Modification. Ghent, Belgium, pp 203–206

    Google Scholar 

  32. Norrström H (1969) Light absorbing properties of pulp and paper components. Svensk Paperstidn 72:25–38

    Google Scholar 

  33. Plackett DV, Dunningham EA, Singh AP (1992) Weathering of chemically modified wood. Accelerated weathering of acetylated radiata pine. Holz Roh- Werkst 50(4):135–140

    Article  CAS  Google Scholar 

  34. Schmalzl KJ, Evans PD (2003) Wood surface protection with some titanium, zirconium and manganese compounds. Polym Degrad Stabil 82:409–419

    Article  CAS  Google Scholar 

  35. Schoeman MW, Dickinson DJ (1997) Growth of Aureobasidium pullulans (de Bary) Arnaud on lignin breakdown products at weathered wood surfaces. Mycologist 11:168–172

    Article  Google Scholar 

  36. Schulte Y, Donath S, Krause A, Militz H (2004) Evaluation of outdoor weathering performance of modified wood. In: Proceedings of International Research Group on Wood Protection. Ljubljana, Slovenia, Document No IRG/WP 04-20296

  37. Sell J, Leukens U (1971) Untersuchungen an bewitterten Holzoberflächen – 2. Mittlg.: Verwitterungserscheinungen an ungeschützten Hölzern 29:23–31

  38. Tomazic M, Kricej B, Pavlic M, Petric M, Krause A, Militz H (2004) Interactions of exterior finishes with DMDHEU treated Pine wood. In: Proceedings of Woodcoatings: Developments for a sustainable future. The Hague, Netherlands

  39. Urban K (2005) The effect of solar radiation on the surface checking of lodge pole pine. MSc thesis, University of British Columbia, Vancouver, Canada

  40. Verma P, Mai C, Krause A, Militz H (2005) Studies on the resistance of DMDHEU treated wood against white-rot and brown-rot fungi. In: Proceedings of International Research Group on Wood Protection, Bangalore, India, Document No IRG/WP/05-10566

  41. Xie Y, Krause A, Mai C , Militz H, Richter K, Urban K, Evans PD (2005) Weathering of wood modified with the N-methylol compound 1,3-dimethylol-4,5-dihydroxyethyleneurea. Polym Degrad Stabil 89(2):189–199

    Article  CAS  Google Scholar 

  42. Xie Y, Krause A, Militz H, Mai C (2006) Coating performance of finishes on wood modified with an N-methylol compound. Prog Org Coat 57(4):291–300

    Article  CAS  Google Scholar 

  43. Yasuda R, Minato K, Norimoto M (1995) Moisture adsorption thermodynamics of chemically modified wood. Holzforschung 49:548–554

    CAS  Google Scholar 

  44. Yusuf S (1996) Properties enhancement of wood by cross-linking formation and its application to the reconstituted wood products. Wood Res 83:140–210

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Carsten Mai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, Y., Krause, A., Militz, H. et al. Weathering of uncoated and coated wood treated with methylated 1,3-dimethylol-4,5-dihydroxyethyleneurea (mDMDHEU) . Holz Roh Werkst 66, 455–464 (2008).

Download citation

  • Published:

  • Issue Date:

  • DOI: