Skip to main content

Advertisement

Log in

Preliminary study of the stiffness enhancement of wood–plastic composites using carbon nanofibers

Orientierende Untersuchungen zur Verbesserung der Steifigkeit von Holz-Kunststoff-Verbundwerkstoffen mittels Kohle-Nanofasern

  • Originalarbeiten Originals
  • Published:
Holz als Roh- und Werkstoff Aims and scope Submit manuscript

Abstract

Vapor-grown carbon nanofibers (CNFs) were compounded into polypropylene (PP) with southern pine wood flour (WF) by high shear melt blending to investigate the reinforcement effects of CNFs on the stiffness of conventional wood flour/plastic composites. CNF loadings of 1, 2 and 5 parts by weight per 100 parts of PP were employed with three WF levels (20, 40 and 60 parts). Maleated polypropylene (MAPP) was used as a coupling agent to improve WF to PP compatibility. The incorporation of CNFs significantly increased the modulus of elasticity of these nanocomposites with MAPP addition. The presence of 0.61 wt % of CNF within a 36.6%WF/1.83%MAPP/61%PP composite exhibited a modulus (7590 MPa) that was 59% greater than its counterpart without CNF (36.8%WF/1.84%MAPP/61.4%PP) (4783 MPa) and 90% greater than pure PP. The origin of this enhancement is not yet understood.

Zusammenfassung

Gaserzeugte Kohle-Nanofasern (CNFs) wurden in einem Schmelz-Mischverfahren unter Aufbringung hoher Scherkräfte in eine Polypropylen (PP)-Southern Pine Holzmehl (WF)-Matrix eingebracht, um zu untersuchen, in welchem Umfang durch CNFs die Steifigkeit herkömmlicher Holzmehl-Plastik-Verbundstoffe erhöht werden kann. 1, 2 und 5 Masseanteile CNF pro 100 Teile PP wurden mit 20, 40 und 60 Masseanteilen Holzmehl vermischt. Maleiertes Polypropylen (MAPP) wurde als Bindemittel zur Verbesserung des WF-PP-Verbunds verwendet. Durch die Beimischung von CNFs wurde der E-Modul dieser Nano-Verbundstoffe mit beigemengtem MAPP deutlich erhöht. 0.61% Masseanteile CNF in einem Verbundwerkstoff mit 36.5%WF/1,83%MAPP/61%PP ergaben einen E-Modul von 7590 MPa, welcher im Vergleich zu einer Probe ohne CNF (36,8%WF/1,84%MAPP/61.4%PP) um 59% höher war (4783 MPa) sowie um 90% höher als reines PP. Die Ursache dieser Erhöhung ist noch unklar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ASTM D 790-92 (1994) Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials. ASTM, West Conshohocken, PA

  2. Cai X, Riedl B, Zhang SY, Wan H (2007) Formation and properties of nanocomposites made up from solid aspen wood, melamine-urea-formaldehyde, and clay. Holzforschung 61:148–154

    Article  CAS  Google Scholar 

  3. Clemons C (2002) Wood–plastic composites in the United States – the interfacing of two industries. For Prod J 52(6):10–18

    Google Scholar 

  4. Donohoe JP, Xu J, Pittman Jr CU (2005) Variability of dual TEM cell shielding effectiveness measurements for vapor grown carbon nanofiber/vinyl ester composites. IEEE International Symposium on Electromagnetic Compatibility (accepted)

  5. Endo M (1988) Grown carbon fibers in the vapor phase. Chemtech 9:568–576

    Google Scholar 

  6. English B, Clemons CM, Stark NM, Schneider JP (1996) Waste-Derived Fillers for Plastics. Forest Products Laboratory General Technical Report FPL-GTR-91, Forest Products Laboratory, Madison, p 15

  7. Koo JH, Pittman Jr CU, Liang K, Cho H, Pilato LA, Pruett G, Winzek P (2003) Nanomodified carbon/carbon composites for intermediate temperature: Processing and Characterization, Proceedings 35th SAMPE International Technical Conference, SAMPE, Covina, CA

  8. Kumar S, Doshi H, Srinivasarao M, Park JO, Schiraldi DA (2002) Fibers from polypropylene/nano carbon fiber composites. Polymer 43:1701–1703

    Article  CAS  Google Scholar 

  9. Lakshmnarayanan P, Toghiani H, Pittman Jr CU (2004) Nitric acid oxidation of vapor grown carbon nanofibers (VGCF). Carbon 42(12/13):2433–2442

    Article  Google Scholar 

  10. Laverty R (2002) Advanced engineered wood composites. For Prod J 52(11/12):18–26

    Google Scholar 

  11. Lu JZ, Wu Q, McNabb Jr HS (2000) Chemical coupling in wood fiber and polymer composites: a review of coupling agents and treatments. Wood Fiber Sci 32(1):88–104

    Google Scholar 

  12. Michell AJ (1989) Wood cellulose-organic polymer composites. Composites Asia Pacific, Adelaide, Australia, Composites Institute of Australia

  13. Netravali AN, Chabba S (2003) Composites get greener. Mater Today 4:22–29

    Article  Google Scholar 

  14. Northolt MG, deVries H (1985) Tensile deformation of regenerated and native cellulose fibres. Angew Makromol Chem 133:183

    Article  CAS  Google Scholar 

  15. Oksman K, Mathew AP (2007) Process and properties of bio-nanocomposites based on cellulose wiskers. 9th International Conf on Wood and Biofiber Plastic Composites-2007, pp 29–35, Forest Products Society, Madison, WI

  16. Patton RD, Pittman Jr CU, Wang L, Hill J, Day A (2002) Ablation, mechanical and thermal conductivity properties of vapor grown carbon fiber/phenolic resin matrix composites. Compos Part A 33(2):243–253

    Article  Google Scholar 

  17. Patton RD, Pittman Jr CU, Wang L, Hill JR (1999) Vapor grown carbon fiber composites with epoxy and poly(phenylene sulfide) matrices. Compos Part A Appl S 30:1081–1091

    Article  Google Scholar 

  18. Pittman Jr CU, Shi J, Zhang J, Toghiani H, Xue Y (2007) Flexural moduli of vapor-grown carbon manofiber/woodflour/polypropylene composites. 9th International Conf on Wood and Biofiber Plastic Composites-2007, pp 95–105, Forest Products Society, Madison, WI

  19. Pittman Jr CU, Xu J, Donohoe JP (2004) Shielding effectiveness of vapor grown carbon nanofiber/vinyl ester composites. EMC Europe 2004. International Symposium on Electromagnetic Compatibility, Sept. 6–10, Eindhoven, Netherlands

  20. Sevastyanova O, Kadla JF (2007a) Use of nanofillers as reinforcement agents for biobased composites. Abstracts of Papers, 233rd ACS National Meeting, Chicago, IL, United States, March 25–29

  21. Sevastyanova O, Kadla JF (2007b) Use of nanofillers as reinforcement agents for biobased composite fibres. 14th ISWFPC Proceedings, Durban, SA June 25–28

  22. Tashiro K, Kobayashi M (1991) Theoretical evaluation of 3-dimensional elastic-constants of native and regenerated celluloses-role of hydrogen-bonds. Polymer 32:1516–1530

    Article  CAS  Google Scholar 

  23. Thostenson ET, Chou TW (2003) On the elastic properties of carbon nanotube-based composites: modelling and characterization. J Phys D Appl Phys 36:39–51

    Article  Google Scholar 

  24. Tibbetts GG (1984) Why are carbon filaments tubular? J Cryst Growth 66:632–638

    Article  CAS  Google Scholar 

  25. Tibbetts GG, Doll GL, Gorkiewicz DW, Moleski JJ, Perry TA, Dasch CJ (1993) Physical properties of vapour-grown carbon fibers. Carbon 31(7):1037–1047

    Article  Google Scholar 

  26. Ventra MD, Evoy S, Heflin Jr JR (2004) Introduction to nanoscale science and technology. Kluwer Academic Publoshers, Norwell, Massachusetts

    Google Scholar 

  27. Xu J, Donohoe JP, Pittman Jr CU (2004) Preparation, electrical and mechanical properties of vapor grown carbon fiber (VGCF)/vinyl ester composites. Compos Part A Appl S 35:693–701

    Article  Google Scholar 

  28. Zhang Y, Zhang J, Shi J, Toghiani H, Xue Y, Pittman Jr CU (2008) Flexural properties and micromorphologies of wood flour/carbon nanofiber/maleated polypropylene/polypropylene composites. Submitted to Composites Part A

  29. Zimmermann T, Bordeanu N, Pohler E (2007) Mechanical and morphological characterization of cellulose fibrils and their composites. 9th international Conf on Wood and Biofiber Plastics Composites-2007, pp 19–25, Forest Products Society, Madison, WI

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jilei Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, J., Zhang, J., Pittman, C.U. et al. Preliminary study of the stiffness enhancement of wood–plastic composites using carbon nanofibers . Holz Roh Werkst 66, 313–322 (2008). https://doi.org/10.1007/s00107-008-0261-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00107-008-0261-5

Keywords

Navigation