Skip to main content
Log in

Experimental study of material properties of modified Scots pine

Experimentelle Bestimmung einiger Materialeigenschaften von modifiziertem Kiefernholz

  • ORIGINALARBEITEN ORIGINALS
  • Published:
Holz als Roh- und Werkstoff Aims and scope Submit manuscript

Abstract

The mechanical and physical properties of modified timber were assessed by experimental work. The timber was modified using three different methods: acetylation with acetic anhydride, modification with methylated melamine formaldehyde resin and heat treatment in an oil bath. The wood material was sapwood of Scots pine (Pinus sylvestris) with dimensions of 45×70×1100 mm. A total of 99 specimens were included in this study. The following properties and their inter-relations were studied: density, modulus of elasticity (MOE), bending creep deflection and relative creep. It was found that all the modifications successfully reduced the relative creep. However, the performance properties of modified timber ought not to be calculated on the basis of density, as is the case for untreated wood. On the other hand, the long-term performance of modified timber can be assessed by its initial MOE and the difference in equilibrium moisture content (EMC) between two climates.

Zusammenfassung

Die mechanischen und physikalischen Eigenschaften von modifziertem Kiefernschnittholz wurden experimentell bestimmt. Das Schnittholz wurde mit drei verschiedenen Methoden modifiziert: Acetylierung mit Essigsäureanhydrid, Modifizierung mit methyliertem Melaminformaldehydharz und Hitzebehandlung im Ölbad. Das Probematerial war Kiefernsplintholz (Pinus sylvestris) mit den Abmessungen 45×70×1100 mm. Insgesamt wurden 99 Proben getestet. Die folgenden Eigenschaften und deren Korrelationen wurden untersucht: Dichte, dynamischer und statischer Elastizitätsmodul, Kriechverformung im Biegeversuch und relatives Kriechen. Alle Modifikationen reduzierten das relative Kriechen erheblich. Verwendungsrelevante Eigenschaften von modifiziertem Holz sollten nicht anhand der Dichte bewertet werden wie bei unbehandeltem Holz. Andererseits kann die Kriechverformung von modifiziertem Holz anhand seines Elastizitätsmoduls und dem Unterschied in der Ausgleichsholzfeuchte zwischen zwei Klimata abgeschätzt werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. van Acker J, Stevens M (1998) The impact of resin treatment on the mechanical properties of solid wood. Paper for the Workshop on Mechanical performance of non-standard wood, COST E8 Conference Mechanical Performance of Wood and Wood Products, Florence, Italy

  2. Bengtsson C (2001) Mechano-sorptive bending creep of timber – influence of material parameters. Holz Roh- Werkst 59:229–236

    Article  Google Scholar 

  3. Bengtsson C, Kliger R (2003) Bending creep of high-temperature dried spruce timber. Holzforschung 57:95–100

    Article  CAS  Google Scholar 

  4. Boyd J (1982) An anatomical explanation for viscoelastic and mechano-sorptive creep in wood and effect of loading rate on strength. In: Baas P (ed) New perspectives in Wood Anatomy. Nijhoff & Junk, Hague, pp 171–222

    Google Scholar 

  5. Deka M, Saikia CN, Baruah KK (2002) Studies on thermal degradation and termite resistant properties of chemically modified wood. Bioresource Technol 84:151–157

    Article  CAS  Google Scholar 

  6. Eaton RA, Hale MDC (1993) Wood – Decay, Pests and Protection. Chapman and Hall, pp 1–4

  7. Epmeier H (2003) Properties of chemically modified wood. Thesis for the degree of licentiate of engineering. Chalmers University of Technology, Göteborg, Sweden

  8. Hanhijärvi A (1995) Modelling of creep deformation mechanisms in wood. Doctoral thesis. Technical Centre of Finland, VTT publications 301, Espoo, Finland

  9. Hauška M, Bučar B (1996) Mechano-sorptive creep in adult, juvenile and reaction wood. In: Proceedings of the International COST 508 Wood Mechanics Conference, Stuttgart, Germany

  10. Hoffmeyer P, Davidson P (1989) Mechano-sorptive creep mechanism of wood in compression and bending. Wood Sci Tech 23:215–227

    Article  Google Scholar 

  11. Ilic J (2001) Relationship among the dynamic and static elastic properties of air-dry Eucalyptus delegatensis R. Baker. Holz Roh- Werkst 59:169–175

    Article  Google Scholar 

  12. Jermer J, Bengtsson C, Brem F, Clang A, Ek-Olausso B, Edlund M (2003) Heat-treated wood – durability and technical properties. SP Report 2003:25. Borås, Sweden

  13. Kamdem DP, Pizzi A, Jermannaud A (2000) Durability of heat-treated wood. Holz Roh- Werkst 60:1–6

    Article  Google Scholar 

  14. Kollmann F, Côté W (1968) Principles of Wood Science and Technology 1. Solid Wood. Springer, Heidelberg

    Google Scholar 

  15. Kollmann F, Krech H (1960) Dynamische Messungen der elastischen Holzeigenschaften und der Dämpfung. Holz Roh- Werkst 18:41–54

    Article  Google Scholar 

  16. Kumar S (1994) Chemical modification of wood – state of the art review paper. Wood Fiber Sci 26(2):270–280

    CAS  Google Scholar 

  17. Larsson P, Simonson R (1994) A study of strength, hardness and deformation of acetylated Scandinavian softwoods. Holz Roh- Werkst 52:83–86

    Article  CAS  Google Scholar 

  18. Lukowsky D (2002) Influence of the formaldehyde content of waterbased melamine formaldehyde resins on physical properties of Scots pine impregnated therewith. Holz Roh- Werkst 60:349–355

    Article  CAS  Google Scholar 

  19. Mohager S, Toratti T (1993) Long term bending creep of wood in cyclic relative humidity. Wood Sci Technol 27:49–59

    Google Scholar 

  20. Morlier P (ed) (1994) Creep in timber structures. Report No 8 of RILEM Technical Committee 112-TSC, E & FN Spon, London, 139 pp

  21. Mårtensson A (1992) Mechanical behaviour of wood exposed to humidity variations. PhD thesis, Lund Institute of Technology, Department of Structural Engineering, Lund, Sweden

  22. Perstorper M (1993) Dynamic modal tests of timber – evaluation according to Euler and Timoshenko theory. In: Proceedings of the 9th International Symposium on Non-destructive Testing of Wood, Madison, USA

  23. Preston A (2000) Wood Preservation – Trends of today that will influence the industry of tomorrow. For Prod J 50(9):12–19

    CAS  Google Scholar 

  24. Rapp A (1999) Physikalische und biologische Vergütung von Vollholz durch Imprägnierung mit wasserverdünnbaren Harzen. Dissertation zur Erlangung des Doktorgrades an der Universität Hamburg. Hamburg, Germany

  25. Rapp A, Sailer M (2000) Heat treatment of wood in Germany – state of the art. Paper prepared for the Seminar on heat-treated wood – properties and commodities, Helsinki, Stockholm, Oslo

  26. Ross RJ, Pellerin RF (1994) Nondestructive testing for assessing wood members in structures: A review. Gen. Tech. Rep. FPL-GTR-70 (Rev.). Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory 40 p

  27. Rowell RM (ed) (1984) The Chemistry of Solid Wood. Am Chem Soc, Washington, D.C.

    Google Scholar 

  28. Rowell RM, Tillman AM, Simonson R (1986) A simplified procedure for acetylation of hardwood and softwood flakes for flakeboard production. J Wood Chem Technol 6(3):427–448

    Article  CAS  Google Scholar 

  29. Santos J (2000) Mechanical behaviour of Eucalyptus wood modified by heat. Wood Sci Tech 34:39–43

    Article  CAS  Google Scholar 

  30. Schniewind AP (ed) (1989) Concise Encyclopedia of Wood and Wood-based Materials. Pergamon Press

  31. Smulski SJ (1991) Relationship of stress wave- and static bending determined properties of four Northeastern hardwoods. Wood Fiber Sci 23:44–57

    Google Scholar 

  32. Tjeerdsma B, Boonstra M, Pizzi P, Tekely H, Militz H (1998) Characterisation of thermally modified wood – molecular reasons for wood performance improvement. Holz Roh- Werkst 56(3):149–153

    Article  CAS  Google Scholar 

  33. Toratti T, Svensson S (2000) Mechano-sorptive experiments perpendicular to grain under tensile and compressive loads. Wood Sci Technol 34:317–326

    Article  CAS  Google Scholar 

  34. Yano H, Norimoto M, Rowell RM (1993) Stabilization of acoustical properties of wooden musical instruments by acetylation. Wood Fiber Sci 25(4):395–403

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Kliger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Epmeier, H., Kliger, R. Experimental study of material properties of modified Scots pine. Holz Roh Werkst 63, 430–436 (2005). https://doi.org/10.1007/s00107-005-0019-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00107-005-0019-2

Keywords

Navigation