Advertisement

Holz als Roh- und Werkstoff

, Volume 63, Issue 6, pp 456–462 | Cite as

Uptake of chitosan based impregnation solutions with varying viscosities in four different European wood species

  • Erik Larnøy
  • Holger Militz
  • Morten EikenesEmail author
ORIGINALARBEITEN ORIGINALS

Abstract

The uptake of chitosan based impregnation solutions were tested on Scots pine (Pinus sylvestris L), Beech (Fagus sylvatica L.), Downy birch (Betula pubescens Ehrh.) and Norway spruce (Picea abies L. Karst.) in longitudinal, radial and tangential directions separately. The four chitosans tested had a fraction of acetylated residues (FA) of 0.198 and average molecular weights ranging from 18 to 129 kDalton. The kinetic viscosity of the 2.4% (weight/volume) solutions at pH 5.0 was in the range of 2.95 to 28.8 mm2 s-1. The general trend showed that there was an increase in uptake of chitosan based impregnation solutions with decreasing viscosity, and the chitosan solution with the lowest viscosity had almost comparable uptake with water for Pine and Beech in the longitudinal direction. In general, the lower the ability for uptake of impregnation solution, the more the viscosity influences the uptake.

Keywords

Chitosan Chitin Longitudinal Direction Average Molecular Weight Tangential Direction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Zusammenfassung

An Kiefer (Pinus sylvestris L.), Buche (Fagus sylvatica L.), Flaumbirke (Betula pubescens Ehrh.) und Fichte (Picea abies L. Karst.) wurde die Aufnahme chitosanbasierter Imprägnierlösungen getrennt in longitudinaler, radialer und tangentialer Richtung untersucht. Die vier untersuchten Chitosane besassen Anteile an acetylierten Resten (FA) von 0.198 und durchschnittliche Molmassen von 18 bis 129 kDalton. Die kinetische Viskosität der Lösungen 2.4% (Masse/Volumen) bei pH 5.0 lag zwischen 2.95 und 28.8 mm2 s-1. Generell zeigte sich, dass mit abnehmender Viskosität die Aufnahme chitosanbasierter Imprägnierlösungen zunahm, und die Chitosanlösung mit der geringsten Viskosität bei Kiefer und Buche in longitudinaler Richtung fast mit Wasser vergleichbare Aufnahmen erzielt. Im Allgemeinen gilt, dass je geringer die Fähigkeit zur Aufnahme von Imprägnierlösungen ist, desto stärker beeinflusst die Viskosität die Aufnahme.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alfredsen G, Eikenes M, Solheim H, Militz H (2004) Screening of chitosan against wood deteriorating fungi. Scand J Forest Res 19(5):4–13CrossRefGoogle Scholar
  2. 2.
    Allan C, Hadwiger L (1979) The fungicidal effect of chitosan on fungi of varying cell wall composition. Exp Mycol 2:285–287CrossRefGoogle Scholar
  3. 3.
    Allan G, Peyron M (1995) Molecular weight manipulation of chitosan I: kinetics of depolymerization by nitrous acid. Carbohyd Res 277:257–272CrossRefGoogle Scholar
  4. 4.
    Chittenden C, Kreber B, McDowell N, Singh T (2004) In vitro studies on the effect of chitosan on mycelium and spore germination of decay fungi, moulds and staining fungi. In: 35th Annual meeting in The International Research Group on Wood Preservation, Ljubljana. IRG/WP 04-10507Google Scholar
  5. 5.
    Chittenden C, Wakeling R, Kreber B (2003) Growth of two selected sapstain fungi and one mould on chitosan amended nutrient medium. In: 34th Annual meeting in The International Research Group of Wood Preservation, Brisbane. IRG/WP 03-10466Google Scholar
  6. 6.
    Eikenes M, Alfredsen G, Christensen B, Militz H, Solheim H (2004) Comparison of chitosan with different molecular weights as possible wood preservative. J Wood Sci 51(4):387–394CrossRefGoogle Scholar
  7. 7.
    Frederiksen O (2001) Fungicid fra rejer (in Danish). Teknologisk Institut, BioteknikGoogle Scholar
  8. 8.
    Frey-Wyssling A (1937) Über die submikroskopische Morphologie der Zellwände (in German). Deut Bot Gesell 55:119–133Google Scholar
  9. 9.
    Kobayashi T, Furukawa I (1995a) Optimum conditions for the formation of chitosan-metal salts and their fixation in wood (in Japanese). J Antibact Antifung Agents 23:263–269Google Scholar
  10. 10.
    Kobayashi T, Furukawa I (1995b) Wood-preserving effectiveness of chitosan-metal salts against wood decaying fungi (in Japanese). J Antibact Antifung Agents 23:343–348Google Scholar
  11. 11.
    Kumar M (2000) A review of chitin and chitosan applications. React Funct Polym 46:1–27CrossRefGoogle Scholar
  12. 12.
    Laflamme P, Benhamou N, Bussires G, Dessureault M (1999) Differential effect of chitosan on root rot fungal pathogens in forest nurseries. Can J Bot 77:1460–1468CrossRefGoogle Scholar
  13. 13.
    Lee J-S, Furukawa I, Sakuno T (1992) Microdistribution of elements in wood after pre-treatment with chitosan and impregnation with chrome-copper-arsenic preservative (in Japanese). Mokuzai Gakkaishi 38:186–192Google Scholar
  14. 14.
    Lee J-S, Furukawa I, Sakuno T (1993) Preservative effectiveness against Tyromyces palustris in wood after pre-treatment with chitosan and impregnation with chromated copper arsenate (in Japanese). Mokuzai Gakkaishi 39:103–108Google Scholar
  15. 15.
    Liese W (1951) Über die Bedeutung der Holzstruktur für das Eindringung öliger Holzschutzmittel (in German). Dissertation, Forstliche Fakultät, University of GöttingenGoogle Scholar
  16. 16.
    Liese W, Bauch J (1967) On anatomical causes of the refractory behavior of Spruce and Douglas fir. J I Wood Sci 19:3–14Google Scholar
  17. 17.
    Maoz M, Morrell J (2004) Ability of chitosans to limit wood decay under laboratory conditions. In: 35th Annual meeting in The International Research Group on Wood Preservation, Ljubljana. IRG/WP 04-30339Google Scholar
  18. 18.
    Mehrtens S (1999) Untersuchungen zur Schutzwirkung von Chitosan gegenüber Holzpilzen (in German). Diploma thesis, Fachbereich Biologie, University of HamburgGoogle Scholar
  19. 19.
    Militz H (1990) Die Verbesserung der Imprägnierbarkeit von Fichtenholz mittels chemischer und enzymatischer Vorbehandlung (in German). PhD Thesis, University of WageningenGoogle Scholar
  20. 20.
    Mima S, Miya M, Iwamoto R, Yoshikawa S (1983) Highly deacetylated chitosan and its properties. J Appl Polym Sci 28:1909–1917CrossRefGoogle Scholar
  21. 21.
    Müller J (1996) Mittel zum Behandeln von Holz (in German). Deutsches Patentamt DE19636702A1Google Scholar
  22. 22.
    Nicholas D (1973) Wood deterioration and its prevention by preservative treatments: Preservatives and preservative systems. In: Cote A (ed) Syracuse Wood Science Series. Syracuse University PressGoogle Scholar
  23. 23.
    Rapp A (1993) Entwicklung einer Prüfmethode zur Tränkbarkeit von Holz (in German). Diploma thesis, University of HamburgGoogle Scholar
  24. 24.
    Ratajska M, Struszczyk M, Boryniec S, Peter M, Loth F (1997) The degree of deacetylation of chitosan: optimization of the IR method. Polimery 42:572–575Google Scholar
  25. 25.
    Sandford P (2002) Commercial sources of chitin & chitosan and their utilization. In: Vårum K, Domard A, Smidsrød O (eds) 5th International Conference of the European Chitin Society. The European Chitin Society, Trondheim, pp 35–42Google Scholar
  26. 26.
    Schmidt O, Müller J, Moreth U (1995) Potentielle Schutzwirkung von Chitosan gegen Holzpilze (in German). Holzzentralblatt 121:2503Google Scholar
  27. 27.
    Stemsrud K (1989) Trevirkets oppbygning – Vedanatomi (in Norwegian). Universitetsforlaget, OsloGoogle Scholar
  28. 28.
    Trendelenburg R (1939) Das Holz als Rohstoff (in German). J.F. Lehmans Verlag, MünchenGoogle Scholar
  29. 29.
    Vårum K, Ottøy M, Smidsrød O (1994) Water-solubility of partially N-acetylatedchitosans as a function of pH: effect of chemical composition and depolymerisation. Carbohyd Polym 25:65–70CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Institute of Wood Biology and Wood TechnologyGöttingenGermany
  2. 2.Norwegian Forest Research InstituteÅsNorway

Personalised recommendations