Skip to main content

Advertisement

Log in

An algorithm for comparing density in CT-images taken before and after compression of Pinus sylvestris

Ein Algorithmus zum Dichtevergleich in CT-Bilder vor und nach der Verdichtung von Pinus sylvestris

  • Originalarbeiten/Originals
  • Published:
Holz als Roh- und Werkstoff Aims and scope Submit manuscript

Abstract

Ten plain-sawn boards of Scots pine (Pinus sylvestris L.) were compressed semi-isostatically according to the CaLignum process in a Quintus press at 25°C and 140 MPa. X-ray computerised tomography images of the same cross-sections were captured before and after compression and compared using a transformation algorithm. In the algorithm the shape of compressed cross-sections were converted to the same shape as non-compressed using the density variation between pixels. Density after compression and the increase in density were analysed using PLS regression. The regressor variables described position in the cross-section and wood properties of each pixel. Heartwood and other resinous wood were less compressed than sapwood, particularly in boards with high resin content. Density also increased little close to the press table, especially in whorls with large knots. Higher original density gives lower degree of compression but still higher density after compression.

Zusammenfassung

Zehn plangesägte Kiefernbretter (P. sylvestris L.) wurden semi-isostatisch nach dem CaLignum-Prozess in einer Quintus-Presse bei 25°C und 140  Mpa verdichtet. Röntgen-CT-Bilder identischer Querschnitte wurden vor und nach Verdichtung aufgenommen und mit Hilfe eines Transformier-Algorithmus verglichen. Die Form des verdichteten Querschnitts wird dabei in das ursprüngliche Format des unverdichteten Querschnitts umgewandelt, wofür die Dichtevariation zwischen den Pixeln herangezogen wird. Die Dichte nach Kompression und der Dichteanstieg wurden mittels PSL-Regression analysiert. Die Regressions-Variablen beschreiben Position und Eigenschaften jedes einzelnen Pixels. Kernholz und anderes harzhaltiges Holz wuden weniger verdichtet als Splintholz, insbesondere bei Brettern mit hohem Harzgehalt. Die Dichte stieg in der Nähe des Presstisches nur geringfügig an, vor allem im Bereich von Astquirlen mit hohem Astanteil. Bei höherer Ausgangsdichte ergab sich nach der Kompression ein geringerer Verdichtungsgrad, wenn auch bei höherer Enddichte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 Abb. 1
Fig. 2 Abb. 2
Fig. 3 Abb. 3

Similar content being viewed by others

References

  • Ando K, Onda H (1999) Mechanism for deformation of wood as a honeycomb structure I: effect of anatomy on the initial deformation process during radial compression. J Wood Sci 45:120–126

    Article  Google Scholar 

  • Back EL, Allen LH (2000) Pitch control, wood resin and deresination. Tappi, Atlanta, p 392

    Google Scholar 

  • Beall FC (2000) Subsurface sensing of properties and effects in wood and wood products. Subsurf Sens Technol Appl 1:181–203

    Article  Google Scholar 

  • Beall FC (2002) Overview of the use of ultrasonic technologies in research on wood properties. Wood Sci Technol 36:197–212. DOI: 10.1007/s00226-002-0138-4

    Article  Google Scholar 

  • Berndt H, Schniewind AP, Johnson GC (1999) High-resolution ultrsonic imaging of wood. Wood Sci Technol 33:185–198

    Article  Google Scholar 

  • Blomberg J, Persson B (2004) Plastic deformation in small clear pieces of Scots pine (Pinus sylvestris L.) during densification with the CaLignum process. J Wood Sci 50(4): 307–314

    Article  Google Scholar 

  • Choi D, Thorpe JL, Hanna RB (1991) Image analysis to measure strain in wood and paper. Wood Sci Technol 25:251–262

    Article  Google Scholar 

  • Danvind J, Synnergren P (2001) Method for measuring shrinkage behaviour of drying wood using digital speckle photography and X-ray computerised tomography. Proceedings of seventh international IUFRO wood-drying conference, Tsukuba, Japan, pp 276–281

  • Dinwoodie JM, Desch HE (1996) Timber: structure, properties, conversion and use, 7th edn. Macmillan, London

    Google Scholar 

  • Farruggia F, Perré P (2000) Microscopic tensile test in the transverse plane of earlywood and latewood parts of spruce. Wood Sci Technol 34:65–82

    Article  Google Scholar 

  • Geladi P, Kowalski BR (1986) Partial least-squares regression: a tutorial. Anal Chim Acta 185:1–17

    Article  Google Scholar 

  • Johannisson TG (1994) High pressure forming of body parts using flexible tools. Sheet Metal Ind 71:20–22

    Google Scholar 

  • Johansson J (2001) Property predictions of wood using microwaves. Licentiate Thesis, Luleå University of Technology

  • Kollman FFP, Côté WA (1984) Principles of wood science and technology, vol I. Springer, Berlin Heidelberg, New York

  • Kuo M-L, Arganbright DG (1980) Cellular distribution of extractives in redwood and incense cedar. part ii. microscopic observation of the location of cell wall and cell cavity extractives. Holzforschung 34:41–47

    Google Scholar 

  • Lindgren O (1992) Medical CT-scanners for non-destructive wood density and moisture content measurements. Doctoral Thesis, Luleå University of Technology

  • Skötte A (1976) Quintus sheet-metal forming presses - a new means for metal forming with high pressures and single tools. Sheet Metal Ind 53:212, 215–216, 219–220

    Google Scholar 

  • Trenard Y (1977) Study of the isostatic compressibility of some timbers. Holzforschung 31:166–171

    Google Scholar 

  • Wangaard FF (1950) The mechanical properties of wood. Wiley, New York, p 377

    Google Scholar 

  • Wold S, Esbensen K, Geladi P (1987) Principal Component Analysis. Chemom Intell Lab Syst 2:37–52

    Article  CAS  Google Scholar 

  • Zink AG, Davidson RW, Hanna RB (1995) Strain measurement in wood using a digital image correlation technique. Wood Fiber Sci 27:346–359

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Blomberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blomberg, J., Persson, B. An algorithm for comparing density in CT-images taken before and after compression of Pinus sylvestris. Holz Roh Werkst 63, 23–29 (2005). https://doi.org/10.1007/s00107-004-0544-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00107-004-0544-4

Keywords

Navigation