Holz als Roh- und Werkstoff

, Volume 63, Issue 2, pp 118–122

Electron microscopic characterization of cell wall degradation of the 400,000-year-old wooden Schöningen spears

  • U. Schmitt
  • A. P. Singh
  • H. Thieme
  • P. Friedrich
  • P. Hoffmann
Originalarbeiten/Originals

Abstract

The cell wall degradation of 400,000-year-old wooden spears, excavated in 1994 at the Schöningen brown-coal opencast mine (100 km east of Hannover/Germany), was examined by transmission electron microscopy. The degradation of the spears was confined to surface layers only, inner parts remained without structural changes. Features in some of the wooden portions, such as a greater lignification of the outer part of the S2 layer and the absence of intercellular cavities suggested that the samples also contained mild compression wood. The presence of both normal and compression wood provided an opportunity to compare the extent of cell wall degradation in these two types of wood. The normal wood cell walls were more severely eroded than the walls of compression wood tracheids. Cell wall erosion in the normal wood extended to the middle lamella in places. The observations indicated an attack of cell walls by erosion bacteria only. As the spears had been buried underground, these observations are consistent with the emerging knowledge that normally erosion bacteria are responsible for the deterioration of buried and wet archaeological woods because they are more tolerant to extremely low oxygen levels.

Elektronenmikroskopische Charakterisierung des Zellwandabbaus von 400.000 Jahre alten Holzspeeren aus Schöningen

Zusammenfassung

Mit Hilfe der Transmissions-Elektronenmikroskopie wurde der Zellwandabbau der 400.000 Jahre alten Holzspeere, die seit 1994 im Braunkohlentagebau bei Schöningen (100 km östlich von Hannover/Deutschland) ausgegraben wurden, untersucht. Der Abbau beschränkte sich auf wenige Zelllagen an der Oberfläche, die weiter innen liegenden Bereiche zeigten keinen Abbau. Neben normalen Tracheiden mit homogener Lignifizierung der S2 fanden sich stets auch Tracheiden, deren äußere S2 eine deutlich stärkere Lignifizierung zeigte. Dieses Merkmal bei gleichzeitigem Fehlen von Interzellularen ist charakteristisch für mildes Druckholz. Das Vorkommen von normalem Holz und mildem Druckholz in den Proben der Schöninger Speere ergab die Möglichkeit, die Abbaumuster in beiden Zelltypen miteinander zu vergleichen. Bei normalen Tracheiden war die Sekundärwand nahezu vollständig erodiert, während dies bei Tracheiden des milden Druckholzes weitgehend auf die innere S2 begrenzt war. Derartige Erosionen, die bevorzugt an ligninärmeren Wandbereichen entstehen, sind typisch für Erosionsbakterien. Da die Speere in tieferen Erdschichten gefunden wurden, stimmen die Beobachtungen damit überein, dass Erosionsbakterien für den Abbau bei extrem niedrigem Sauerstoffgehalt verantwortlich sind.

References

  1. Björdal CG, Nilsson T, Daniel G (1999) Microbial decay of waterlogged archaeological wood found in Sweden: applicable to archaeology and conservation. Intern Biodeter Biodegrad 43:63–71Google Scholar
  2. Blanchette RA, Nilsson T, Daniel G, Abad AR (1990) Biological degradation of wood. In: Rowell RM, Barbour J (eds) Archaeological wood: properties, chemistry and preservation. American Chemical Society, Washington, pp 147–174Google Scholar
  3. Blanchette RA, Iiyama K, Abad AR, Cease KR (1991a) Ultrastructure of ancient buried wood from Japan. Holzforschung 45:161–168Google Scholar
  4. Blanchette RA, Cease KR, Abad AR, Koastler RJ, Simpse E, Sams GK (1991b) An evaluation of different form of deterioration found in archaeological wood. Intern Biodeter 28:3–22Google Scholar
  5. Blanchette RA, Obst JR, Timell TE (1994) Biodegradation of compression wood and tension wood by white and brown rot fungi. Holzforschung 48(Suppl):34–42Google Scholar
  6. Daniel G, Nilsson T (1986) Ultrastructural observations on wood degrading erosion bacterial. International Research Group Wood Preservation Document IRG/WP-1283Google Scholar
  7. Daniel G, Nilsson T (1998) Developments in the study of soft rot and bacterial decay: In: Bruce A, Palfreymann JW (eds) Forest products biotechnology. Taylor and Francis, London, pp 37–62Google Scholar
  8. Donaldson LA (1992) Lignin distribution during latewood formation in Pinus radiata D. Don. IAWA Bull ns 13:381–387Google Scholar
  9. Donaldson LA, Singh AP (1990) Ultrastructure of terminalia wood from an ancient polynesian canoe. IAWA Bull ns 11:195–202Google Scholar
  10. Eriksson KEL, Blanchette RA, Ander P (1990) Microbial and enzymatic degradation of wood and wood components. Springer, Berlin Heidelberg New YorkGoogle Scholar
  11. Kim YS, Singh AP (1994) Ultrastructural aspects of bacterial attacks on a submerged ancient wood. Mokuzai Gakkaishi 40:554–562Google Scholar
  12. Kim YS, Singh AP (1999) Micromorphological characteristics of compression wood degradation in waterlogged archaeological pine wood. Holzforschung 53:381–385Google Scholar
  13. Kim YS, Singh AP (2000) Micromorphological characteristics of wood biodegradation in wet environments: a review. IAWA J 21: 135–155Google Scholar
  14. Kim YS, Singh AP, Nilsson T (1996) Bacteria as important degraders in waterlogged archaeological woods. Holzforschung 50:389–392Google Scholar
  15. Schmidt O, Liese W (1994) Occurrence and significance of bacteria in wood. Holzforschung 48:271–277Google Scholar
  16. Schmidt O, Nagashima Y, Liese W, Schmitt U (1987) Bacterial wood degradation studies under laboratory conditions and in lakes. Holzforschung 41:137–140Google Scholar
  17. Singh AP (1997) The ultrastructure of the attack of Pinus radiata mild compression wood by erosion and tunnelling bacteria. Can J Bot 75:1095–1102Google Scholar
  18. Singh AP, Butcher JA (1991) Bacterial degradation of wood cell walls: a review of degradation patterns. J Inst Wood Sci 12:143–157Google Scholar
  19. Singh AP, Wakeling RN (1997) Presence of widespread bacterial attacks in preservative-treated cooling tower timbers. N Z J For Sci 27:79–85Google Scholar
  20. Singh AP, Nilsson T, Daniel G (1990) Bacterial attack of Pinus sylvestris wood under near-anaerobic conditions. J Inst Wood Sci 11:237–249Google Scholar
  21. Singh AP, Wakeling RN, Drysdale JA (1994) Microbial attack of CCA-treated Pinus radiata timber from a retaining wall. Holzforschung 48:458–462Google Scholar
  22. Thieme H (1996) Die ältesten Wurfspeere der Welt—Jagdwaffen des Urmenschen (Homo erectus) aus Schöningen, Nordharzvorland. Berichte zur Denkmalpflege in Niedersachen 16:2–6Google Scholar
  23. Timell TE (1986) Compression wood in gymnosperms, vol 1. Properties of compression wood. Springer, Berlin Heidelberg New YorkGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • U. Schmitt
    • 1
  • A. P. Singh
    • 2
  • H. Thieme
    • 3
  • P. Friedrich
    • 3
  • P. Hoffmann
    • 4
  1. 1.Bundesforschungsanstalt für Forst- und HolzwirtschaftInstitut für Holzbiologie und HolzschutzHamburgGermany
  2. 2.Forest ResearchRotoruaNew Zealand
  3. 3.Niedersächsisches Landesamt für DenkmalpflegeHannoverGermany
  4. 4.Deutsches SchifffahrtsmuseumBremerhavenGermany

Personalised recommendations