Die Vibrant Soundbridge zur Versorgung von Patienten mit kongenitalen Mittelohrfehlbildungen

Hearing rehabilitation with the Vibrant Soundbridge in patients with congenital middle ear malformation

Zusammenfassung

Hintergrund

Angeborene schwere Mittelohrfehlbildungen, die meist einseitig auftreten, führen zu Schwerhörigkeit und ästhetischer Beeinträchtigung. Zur audiologischen Rehabilitation stehen, neben der klassischen Mittelohrchirurgie und Knochenleitungshörgeräten, aktive Mittelohrimplantate zur Verfügung.

Ziel der Arbeit

Es wird eine Übersicht über die audiologischen Versorgungsmöglichkeiten von Mittelohrfehlbildungen mit Fokus auf die Versorgung mit einer Vibrant Soundbridge gegeben.

Material und Methoden

In der Datenbank PubMed erfolgte eine selektive Literaturrecherche zu den therapeutischen Möglichkeiten bis 10/2020, außerdem wird über eigene klinische Erfahrungen berichtet.

Ergebnisse

Die Vibrant Soundbridge, die für Kinder ab dem 5. Lebensjahr zugelassen ist, eignet sich zur Versorgung von Mittelohrfehlbildungen ab einem Jahrsdoerfer-Score von 5. Wenngleich operativ anspruchsvoller als ein Knochenleitungshörgerät, ist die Methode sicher, liefert gute audiometrische Ergebnisse (hinsichtlich Sprachverstehen und Richtungshören den Knochenleitungsimplantaten überlegen), erfordert keine intensive postoperative Nachsorge und selten Revisionseingriffe. Die Ankopplung kann an die (rudimentär angelegte) Gehörknöchelchenkette oder am runden Fenster erfolgen.

Schlussfolgerung

Bei entsprechender Anatomie stellt die Vibrant Soundbridge eine geeignete Versorgungsmöglichkeit von Mittelohrfehlbildungen dar.

Abstract

Background

Congenital aural atresia, which is usually unilateral, causes hearing loss and aesthetic impairment. Besides tympanoplasty with/without canalplasty and bone conduction devices, active middle ear implants are also available for functional rehabilitation.

Objective

This article aims to present a contemporary review on the treatment possibilities for middle ear malformations, with a focus on audiological rehabilitation with the Vibrant Soundbridge.

Materials and methods

A selective literature search for treatment possibilities was performed in PubMed up to October 2020, and personal clinical experiences are reported.

Results

The Vibrant Soundbridge, which is approved for children ≥ 5 years, is suitable for treatment of middle ear malformations with a Jahrsdoerfer score ≥ 5. Although implantation of a Vibrant Soundbridge is surgically more demanding than implantation of a bone conduction device, the method is safe, delivers good auditory results (superior to bone conduction devices in terms of speech understanding and spatial hearing), does not involve intensive postsurgical care, and rarely requires revision surgery. The Vibrant Soundbridge can be coupled to (remnants of) the ossicular chain or the round window.

Conclusion

The Vibrant Soundbridge is an appropriate treatment method in patients with middle ear malformations who have suitable anatomical preconditions.

This is a preview of subscription content, access via your institution.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. 1.

    Farrior JB (1987) Surgical management of congenital conductive deafness. South Med J 80:450–453

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  2. 2.

    Raz Y, Lustig L (2002) Surgical management of conductive hearing loss in children. Otolaryngol Clin North Am 35:853–875

    PubMed  Article  PubMed Central  Google Scholar 

  3. 3.

    Cole RR, Jahrsdoerfer RA (1990) The risk of cholesteatoma in congenital aural stenosis. Laryngoscope 100(6):576–578

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Weerda H (2004) Chirurgie der Ohrmuschel. Thieme, Stuttgart

    Google Scholar 

  5. 5.

    Kountakis SE, Helidonis E, Jahrsdoerfer RA (1995) Microtia grade as an indicator of middle ear development in aural atresia. Arch Otolaryngol Head Neck Surg 121:885–886

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Suutarla S, Rautio J, Ritvanen A et al (2007) Microtia in Finland: comparison of characteristics in different populations. Int J Pediatr Otorhinolaryngol 71:1211–1217

    PubMed  Article  PubMed Central  Google Scholar 

  7. 7.

    Gonzalez-Andrade F, Lopez-Pulles R, Espin VH et al (2010) High altitude and microtia in Ecuadorian patients. J Neonatal Perinatal Med 3:109–116

    Article  Google Scholar 

  8. 8.

    Shaw GM, Carmichael SL, Kaidarova Z et al (2004) Epidemiologic characteristics of anotia and microtia in California, 1989–1997. Birth Defects Res Part A Clin Mol Teratol 70:472–475

    CAS  Article  Google Scholar 

  9. 9.

    Klieger-Grossmann C, Chitayat D, Lavign S et al (2010) Prenatal exposure to mycophenolate mofetil: an updated estimate. J Obstet Gynaecol Can 32:794–797

    PubMed  Article  Google Scholar 

  10. 10.

    Hackshaw A, Rodeck C, Boniface S (2011) Maternal smoking in pregnancy and birth defects: a systematic review based on 173,687 malformed cases and 11.7 million controls. Hum Reprod Update 17:589–604

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Ma C, Carmichael SL, Scheuerle AE et al (2010) Association of microtia with maternal obesity and periconceptional folic acid use. Am J Med Genet A 152A:2756–2761

    PubMed  Article  PubMed Central  Google Scholar 

  12. 12.

    Siegert R, Weerda H, Mayer T et al (1996) Hochauflösende Computertomographie fehlgebildeter Mittelohren. Laryngol Rhinol Otol 75:187–194

    CAS  Article  Google Scholar 

  13. 13.

    Ishimoto S, Ito K, Karino S et al (2007) Hearing levels in patients with microtia. Correlation with temporal bone malformation. Laryngoscope 117:461–465

    PubMed  Article  PubMed Central  Google Scholar 

  14. 14.

    Takegoshi H, Kaga K, Kikuchi S et al (2002) Facial canal anatomy in patients with microtia: evaluation of the temporal bones with thin-section CT. Radiology 225:852–858

    PubMed  Article  PubMed Central  Google Scholar 

  15. 15.

    Booth T, Vezina L, Karcher G et al (2000) Imaging and clinical evaluation of isolated atresia of the oval window. AJNR Am J Neuroradiol 21:322–327

    Google Scholar 

  16. 16.

    Sennaroğlu L, Bajin MD, Atay G et al (2014) Oval window atresia: a novel surgical approach and pathognomonic radiological finding. Int J Pediatr Otorhinolaryngol 78(5):769–776

    PubMed  Article  Google Scholar 

  17. 17.

    Chen K, Huiying L, Youzhou X et al (2015) Morphological characteristics of round window nice in congenital aural atresia and stenosis patients. J Comput Assist Tomogr 39(4):547–551

    PubMed  Article  Google Scholar 

  18. 18.

    Beutner D, Delb W, Frenzel H et al (2018) Leitlinie „Implantierbare Hörgeräte“ – Kurzversion: S2k-Leitlinie der Arbeitsgemeinschaft Deutschsprachiger Audiologen, Neurootologen und Otologen (ADANO), der Deutschen Gesellschaft für Hals-Nasen-Ohren-Heilkunde, Kopf- und Hals-Chirurgie (DGHNO) unter Mitarbeit der Deutschen Gesellschaft für Audiologie (DGA), der Deutschen Gesellschaft für Phoniatrie und Pädaudiologie (DGPP) und von Patientenvertretern. HNO 66(9):654–659

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Snapp HA, Ausili SA (2020) Hearing with one ear: consequences and treatments for profound unilateral hearing loss. J Clin Med 9(4):1010

    PubMed Central  Article  PubMed  Google Scholar 

  20. 20.

    Zhang T, Bulstrode N, Chang K‑W et al (2019) International consensus recommendations on microtia, aural atresia and functional ear reconstruction. J Int Adv Otol 15(2):204–208

    PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Lieu JE (2004) Speech-language and educational consequences of unilateral hearing loss in children. Arch Otolaryngol Head Neck Surg 130:524–530

    PubMed  Article  PubMed Central  Google Scholar 

  22. 22.

    Lieu JE, Tye-Murray N, Fu Q (2012) Longitudinal study of children with unilateral hearing loss. Laryngoscope 122:2088–2095

    PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Kuppler K, Lewis M, Evans AK (2013) A review of unilateral hearing loss and academic performance: is it time to reassess traditional dogmata? Int J Pediatr Otorhinolaryngol 77:617–622

    PubMed  Article  PubMed Central  Google Scholar 

  24. 24.

    Sharma A, Dorman M, Spahr AJ (2002) A sensitive period for the development of the central auditory system in children with cochlear implants: implications for age of implantation. Ear Hear 23:543–539

    Article  Google Scholar 

  25. 25.

    McKay CM (2018) Brain plasticity and rehabilitation with cochlear implant. Adv Otorhinolaryngol 81:57–65. https://doi.org/10.1159/000485586

    Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Rauch AK, Arndt S, Aschendorff A et al (2020) Long-term results of cochlear implantation in children with congenital single sided deafness. Eur Arch Otorhinolaryngol. https://doi.org/10.1007/s00405-020-06409-6

    Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Frenzel H (2018) Hearing rehabilitation in congenital middle ear malformation. Adv Otorhinolaryngol 81:32–42

    PubMed  PubMed Central  Google Scholar 

  28. 28.

    Lo JFW, Tsang WSS, Yu JYK, Ho OYM, Ku PKM, Tong MCF (2014) Contemporary hearing rehabilitation options in patients with aural atresia. Biomed Res Int 2014:761579

    PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Teunissen EB, Cremers WR (1993) Classification of congenital middle ear anomalies. Report on 144 ears. Ann Otol Rhinol Laryngol 102:606–612

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  30. 30.

    Thomeer HK, Kunst H, Verbist B et al (2012) Congenital oval or round window anomaly with or without abnormal facial nerve course: surgical results for 15 ears. Otol Neurotol 33(5):779–784

    PubMed  Article  PubMed Central  Google Scholar 

  31. 31.

    Vincent R, Wegner I, Derks L et al (2016) Congenital oval or round window malformations in children: surgical findings and results in 17 cases. Laryngoscope 126:2552–2558

    PubMed  Article  PubMed Central  Google Scholar 

  32. 32.

    Jahrsdoerfer RA, Yeakley JW, Aguilar EA et al (1992) Grading system for the selection of patients with congenital aural atresia. Am J Otol 113:6–12

    Google Scholar 

  33. 33.

    Hildmann H, Rauchfuß A, Hildmann A (1992) Indikation und chirurgische Behandlung der großen Mittelohrmißbildungen. HNO 40:232–235

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Schwager K, Helms J (1995) Microsurgery of large middle ear abnormalities. Technical surgical considerations. HNO 43(7):427–431

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    De la Cruz A, Teufert KB (2003) Congenital aural atresia surgery: long-term results. Otolaryngol Head Neck Surg 129(1):121–127

    PubMed  Article  PubMed Central  Google Scholar 

  36. 36.

    Lambert PR (1998) Congenital aural atresia: stability of surgical results. Laryngoscope 108(12):1801–1805

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. 37.

    Farnoosh S, Mitsinikos FT, Maceri D, Don DM (2014) Bone-anchored hearing aid vs. reconstruction of the external auditory canal in children and adolescents with congenital aural atresia: a comparison study of outcomes. Front Pediatr 2:5

    PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Moon IJ, Cho YS, Park J et al (2012) Long-term stent use can prevent postoperative canal stenosis in patients with congenital aural atresia. Otolaryngol Head Neck Surg 146(4):614–620

    PubMed  Article  PubMed Central  Google Scholar 

  39. 39.

    Oliver ER, Hughley BB, Shonka DC et al (2011) Revision aural atresia surgery: indications and outcomes. Otol Neurotol 32(2):252–258

    PubMed  Article  PubMed Central  Google Scholar 

  40. 40.

    Bouhabel S, Arcand P, Saliba I (2012) Congenital aural atresia: bone-anchored hearing aid vs. external auditory canal reconstruction. Int J Pediatr Otorhinolaryngol 76(2):272–277

    PubMed  Article  Google Scholar 

  41. 41.

    Yu JK, Wong LL, Tsang WS, Tong MC (2014) A tutorial on implantable hearing amplification options for adults with unilateral microtia and atresia. Biomed Res Int 2014:703256

    PubMed  PubMed Central  Google Scholar 

  42. 42.

    Dazert S, Thomas JP, Volkenstein S (2015) Surgical and technical modalities for hearing restoration in ear malformations. Facial Plast Surg 31(6):581–586

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Rahne T (2019) Physikalisch-audiologische Grundlagen implantierbarer Hörsysteme: Über Energieübertragung, Ankopplung und Ausgangsleistung. HNO. https://doi.org/10.1007/s00106-019-00776-1

    Article  PubMed  Google Scholar 

  44. 44.

    Rahne T, Plontke SK (2016) Apparative Therapie bei kombiniertem Hörverlust: Ein audiologischer Vergleich aktueller Hörsysteme. HNO 64(2):91–100

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Wever EG, Lawrence M (1952) The place principle in auditory theory. Proc Natl Acad Sci USA 38:133–138

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. 46.

    Spindel JH, Lambert PR, Ruth RA (1995) The round window electromagnetic implantable hearing aid approach. Otolaryngol Clin North Am 28(1):189–205

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Colletti V, Soli SD, Carner M et al (2006) Treatment of mixed hearing losses via implantation of a vibratory transducer on the round window. Int J Audiol 10:600–608

    Article  Google Scholar 

  48. 48.

    Baumgartner W‑D, Böheim K, Hagen R et al (2010) The vibrant soundbridge for conductive and mixed hearing losses: European multicenter study results. Adv Otorhinolaryngol 39:38–50

    Google Scholar 

  49. 49.

    Mandalà M, Colletti L, Colletti V (2011) Treatment of the atretic ear with round window vibrant soundbridge implantation in infants and children: electrocochleography and audiologic outcomes. Otol Neurotol 32(8):1250–1255

    PubMed  Article  PubMed Central  Google Scholar 

  50. 50.

    Kiefer J, Arnold W, Staudenmaier R (2006) Round window stimulation with an implantable hearing aid (Soundbridge®) combined with autogenous reconstruction of the auricle—a new approach. Orl J Otorhinolaryngol Relat Spec 68:378–385

    PubMed  Article  PubMed Central  Google Scholar 

  51. 51.

    Hempel JM, Braun T, Berghaus A (2013) Functional and aesthetic rehabilitation of microtia in children and adolescents. HNO 61:655–666

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  52. 52.

    Frenzel H, Sprinzl G, Streitberger C et al (2015) The vibrant soundbridge in children and adolescents: preliminary European multicenter results. Otol Neurotol 36(7):1216–1222

    PubMed  Article  PubMed Central  Google Scholar 

  53. 53.

    Hempel JM, Sprinzl G, Riechelmann H et al (2019) A transcutaneous active middle ear implant (AMEI) in children and adolescents: long-term, multicenter results. Otol Neurotol 40(8):1059–1067

    PubMed  Article  PubMed Central  Google Scholar 

  54. 54.

    Lailach S, Zahnert T, Maurer J et al (2020) The vibrating ossicular prosthesis in children and adolescents: a retrospective study. Eur Arch Otorhinolaryngol 277(1):55–60

    PubMed  Article  PubMed Central  Google Scholar 

  55. 55.

    Maier H, Baumann U, Baumgartner WD et al (2018) Minimal reporting standards for active middle ear hearing implants. Audiol Neurootol 23(2):105–115

    PubMed  PubMed Central  Article  Google Scholar 

  56. 56.

    Kemp P, Van Stralen J, De Graaf P, Berkhout E, Van Horssen P, Merkus P (2020) Cone beam CT compared to multi slice CT for the diagnostic analysis of conductive hearing loss. A feasibility study. J Int Adv Otol 16(2):222–226

    PubMed  PubMed Central  Article  Google Scholar 

  57. 57.

    Piergallini L, Scola E, Tuscano B et al (2018) Flat-panel CT versus 128-slice CT in temporal bone imaging: assessment of image quality and radiation dose. Eur J Radiol 106:106–113

    PubMed  Article  PubMed Central  Google Scholar 

  58. 58.

    Frenzel H, Sprinzl G, Widmann G et al (2013) Grading system for the selection of patients with congenital aural atresia for active middle ear implants. Neuroradiology 55:895–911

    PubMed  Article  PubMed Central  Google Scholar 

  59. 59.

    Zhao S, Gong S, Han D et al (2016) Round window application of an active middle ear implant (AMEI) system in congenital oval window atresia. Acta Otolaryngol 136(1):23–33

    PubMed  Article  Google Scholar 

  60. 60.

    Alzhrani F, Halawani R, Yousef M (2020) Feasibility ans efficacy of vibrant soundbridge short process coupler in patients with aural atresia. Otol Neurotol. https://doi.org/10.1097/MAO.0000000000002801

    Article  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Park E, Lee G, Jung HH et al (2019) Analysis of inner ear anomalies in unilateral congenital aural atresia combined with microtia. Clin Exp Otorhinolaryngol 12(2):176–180

    PubMed  Article  PubMed Central  Google Scholar 

  62. 62.

    Fröhlich L, Rahne T, Plontke SK et al (2020) Intraoperative recording of auditory brainstem responses for monitoring of floating mass transducer coupling efficacy during revision surgery-proof of concept. Otol Neurotol 41(2):e168–e171

    PubMed  PubMed Central  Google Scholar 

  63. 63.

    Kabadi SJ, Ruhl DS, Mukherjee S et al (2018) Semiautomated middle ear volume measurement as a predictor of postsurgical outcomes for ear volume measurement as a predictor of postsurgical outcomes for congenital aural atresia. AJNR Am J Neuroradiol 39:355–361

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to PD Dr. J. M. Hempel.

Ethics declarations

Interessenkonflikt

J.M. Hempel weist auf folgende Beziehungen hin: Reisekostenzuschüsse von der Firma Medel zur Vorstellung von Daten der mit VSB-implantierten Patienten auf Kongressen. A. Epp und V. Volgger geben an, dass kein Interessenkonflikt besteht.

Diese retrospektive Studie erfolgte nach Konsultation der zuständigen Ethikkommission und im Einklang mit nationalem Recht.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hempel, J.M., Epp, A. & Volgger, V. Die Vibrant Soundbridge zur Versorgung von Patienten mit kongenitalen Mittelohrfehlbildungen. HNO (2021). https://doi.org/10.1007/s00106-021-01004-5

Download citation

Schlüsselwörter

  • Hörgerät
  • Audiologische Rehabilitation
  • Prothesen und Implantate
  • Atresia auris congenita
  • Schallleitungsschwerhörigkeit

Keywords

  • Hearing aid
  • Audiologic rehabilitation
  • Prostheses and implants
  • Congenital aural atresia
  • Conductive hearing loss