Skip to main content
Log in

Laser-Doppler-vibrometrische Messungen an humanen Felsenbeinen

Laser Doppler vibrometric measurements on human temporal bones

  • Leitthema
  • Published:
HNO Aims and scope Submit manuscript

Zusammenfassung

Laser-Doppler-vibrometrische (LDV-​)Messungen an humanen Felsenbeinen stellen das Standardverfahren zur Vorhersage der Leistungsfähigkeit von aktiven Mittelohrimplantaten (AMEI) dar und werden als präklinische Versuche in der Entwicklung, im Zulassungsprozess, in der Weiterentwicklung und Indikationserweiterung von AMEI eingesetzt. Die optimale Ankopplung des Schallwandlers an bewegliche Strukturen des Mittel- bzw. Innenohrs ist ausschlaggebend für die Leistung des Implantats bzw. die Hörverbesserung für den Patienten. Die Cochlea kann dabei über das ovale Fenster (Vorwärtsstimulation) oder das runde Fenster (Rückwärtsstimulation) angeregt werden. Für die Vorwärtsstimulation definiert die internationale Norm der American Society for Testing and Materials (ASTM F2504-05) ein Verfahren, das die physiologisch normale Funktion der im Versuch verwendeten Felsenbeine sicherstellt. Für die Rückwärtsübertragung, bei der der Zustand der Felsenbeine noch kritischer ist, fehlt eine vergleichbare Standardmethode. Eine entsprechende Präparation und Aufbewahrung der humanen Felsenbeine sowie ein hinsichtlich Kalibrierung, Reproduzierbarkeit von Messpositionen und -winkeln geeigneter LDV-Versuchsaufbau liefern Ergebnisse, die zum einen den Vergleich verschiedener Ankopplungsarten ermöglichen und zum anderen sehr gut mit klinischen Daten korrelieren.

Abstract

Laser Doppler vibrometric (LDV) measurements on human temporal bones represent the standard method for predicting the performance of active middle ear implants (AMEI) and are used as preclinical tests in the development, approval process, and indication expansion of AMEI. The quality of the coupling of the floating mass transducer to the mobile structures of the middle ear is decisive for the performance of the implant and patients’ hearing perception. The cochlea can be stimulated via the oval window (forward stimulation) or the round window (reverse stimulation). For forward stimulation, the ASTM standard F2504-05 defines a method to ensure physiologically normal properties of the temporal bones used in the experiments. For reverse stimulation, which depends even more critically on the quality of the temporal bone, a comparable standard method is lacking. Appropriate preparation and storage of the human petrous bone as well as suitable LDV test setups with respect to calibration and reproducibility of measuring positions and angles provide results that allow a comparison of different types of coupling and also correlate well with clinical data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Abbreviations

AMEI:

Aktives Mittelohrimplantat

ASTM:

American Society for Testing and Materials

FMT:

Floating Mass Transducer

LDV:

Laser-Doppler-Vibrometer

SP-Coupler:

Short-Process-Coupler

VORP:

Vibrating Ossicular Replacement Prosthesis

VSB:

Vibrant SoundBridge

Literatur

  1. Alberty J, Filler TJ, Schmäl F, Peuker ET (2002) Thiel method fixed cadaver ears. A new procedure for graduate and continuing education in middle ear surgery. HNO 50(8):739

    Article  CAS  Google Scholar 

  2. Arnold A, Stieger C, Candreia C, Pfiffner F, Kompis M (2010) Factors improving the vibration transfer of the floating mass transducer at the round window. Otol Neurotol 31(1):122–128

    Article  Google Scholar 

  3. Baumgartner WD, Böheim K, Hagen R, Müller J, Lenarz T, Reiss S, Opie J (2010) The vibrant soundbridge for conductive and mixed hearing losses: European multicenter study results. Adv Otorhinolaryngol 69:38–50

    PubMed  Google Scholar 

  4. Beleites T, Neudert M, Bornitz M, Zahnert T (2014) Sound transfer of active middle ear implants. Otolaryngol Clin North Am 47(6):859–891

    Article  Google Scholar 

  5. Chien W, Ravicz ME, Merchant SN, Rosowski JJ (2006) The effect of methodological differences in the measurement of stapes motion in live and cadaver ears. Audiol Neurotol 11(3):183–197

    Article  Google Scholar 

  6. Colletti V, Soli SD, Carner M, Colletti L (2006) Treatment of mixed hearing losses via implantation of a vibratory transducer on the round window: Tratamiento de hipoacusias mixtas con un transductor vibratorio en la ventana redonda. Int J Audiol 45(10):600–608

    Article  Google Scholar 

  7. Cremers CW, O’Connor AF, Helms J, Roberson J, Clarós P, Frenzel H, Orfila D (2010) International consensus on Vibrant Soundbridge® implantation in children and adolescents. Int J Pediatr Otorhinolaryngol 74(11):1267–1269

    Article  Google Scholar 

  8. Fisch U, Cremers WRJ, Lenarz T, Weber B, Babighian G, Uziel AS, Fraysse B (2001) Clinical experience with the Vibrant Soundbridge implant device. Otol Neurotol 22(6):962–972

    Article  CAS  Google Scholar 

  9. Fröhlich L, Rahne T, Plontke SK, Oberhoffner T, Dahl R, Mlynski R, Hoth S (2020) Intraoperative quantification of floating mass transducer coupling quality in active middle ear implants: a multicenter study. Eur Arch Otorhinolaryngol. https://doi.org/10.1007/s00405-020-06313-z

    Article  PubMed  PubMed Central  Google Scholar 

  10. Grossöhmichen M, Waldmann B, Salcher R, Prenzler N, Lenarz T, Maier H (2017) Validation of methods for prediction of clinical output levels of active middle ear implants from measurements in human cadaveric ears. Sci Rep 7(1):1–10

    Article  Google Scholar 

  11. Hato N, Stenfelt S, Goode RL (2003) Three-dimensional stapes footplate motion in human temporal bones. Audiol Neurotol 8(3):140–152

    Article  Google Scholar 

  12. Jenkins HA, Atkins JS, Horlbeck D, Hoffer ME, Balough B, Alexiades G, Garvis W (2008) Otologics fully implantable hearing system: phase I trial 1‑year results. Otol Neurotol 29(4):534–541

    Article  Google Scholar 

  13. Lenarz T, Zimmermann D, Maier H, Busch S (2018) Case report of a new coupler for round window application of an active middle ear implant. Otol Neurotol 39(10):e1060–e1063

    Article  Google Scholar 

  14. Mlynski R, Dalhoff E, Heyd A, Wildenstein D, Hagen R, Gummer AW, Schraven SP (2015) Reinforced active middle ear implant fixation in incus vibroplasty. Ear Hear 36(1):72–81

    Article  Google Scholar 

  15. Mlynski R, Mueller J, Hagen R (2010) Surgical approaches to position the vibrant soundbridge in conductive and mixed hearing loss. Oper Tech Otolaryngol Head Neck Surg 21(4):272–277

    Article  Google Scholar 

  16. Mosnier I, Sterkers O, Bouccara D, Labassi S, Bebear JP, Bordure P, Lavieille JP (2008) Benefit of the Vibrant Soundbridge device in patients implanted for 5 to 8 years. Ear Hear 29(2):281–284

    Article  Google Scholar 

  17. Müller M, Salcher R, Lenarz T, Maier H (2017) The Hannover coupler: controlled static prestress in round window stimulation with the floating mass transducer. Otol Neurotol 38(8):1186–1192

    Article  Google Scholar 

  18. Nakajima HH, Dong W, Olson ES, Rosowski JJ, Ravicz ME, Merchant SN (2010) Evaluation of round window stimulation using the floating mass transducer by intracochlear sound pressure measurements in human temporal bones. Otol Neurotol 31(3):506–511

    Article  Google Scholar 

  19. Puria S, Maria PL, Perkins R (2016) Temporal-Bone measurements of the maximum equivalent pressure output and maximum stable gain of a light driven hearing system that mechanically stimulates the Umbo. Otol Neurotol 37(2):160–166

    Article  Google Scholar 

  20. Rajan GP, Lampacher P, Ambett R, Dittrich G, Kuthubutheen J, Wood B, Marino R (2011) Impact of floating mass transducer coupling and positioning in round window vibroplasty. Otol Neurotol 32(2):271–277

    Article  Google Scholar 

  21. Ravicz ME, Merchant SN, Rosowski JJ (2000) Effect of freezing and thawing on stapes-cochlear input impedance in human temporal bones. Hear Res 150(1–2):215–224

    Article  CAS  Google Scholar 

  22. Rosowski JJ, Chien W, Ravicz ME, Merchant SN (2007) Testing a method for quantifying the output of implantable middle ear hearing devices. Audiol Neurotol 12(4):265–276

    Article  CAS  Google Scholar 

  23. Salcher R, Schwab B, Lenarz T, Maier H (2014) Round window stimulation with the floating mass transducer at constant pretension. Hear Res 314:1–9

    Article  Google Scholar 

  24. Schraven SP, Dalhoff E, Wildenstein D, Hagen R, Gummer AW, Mlynski R (2014) Alternative fixation of an active middle ear implant at the short incus process. Audiol Neurotol 19(1):1–11

    Article  Google Scholar 

  25. Schraven SP, Großmann W, Rak K, Shehata-Dieler W, Hagen R, Mlynski R (2016) Long-term stability of the active middle-ear implant with floating-mass transducer technology: a single-center study. Otol Neurotol 37(3):252–266

    Article  Google Scholar 

  26. Schraven SP, Hirt B, Goll E, Heyd A, Gummer AW, Zenner HP, Dalhoff E (2012) Conditions for highly efficient and reproducible round-window stimulation in humans. Audiol Neurotol 17(2):133–138

    Article  Google Scholar 

  27. Schraven SP, Hirt B, Gummer AW, Zenner HP, Dalhoff E (2011) Controlled round-window stimulation in human temporal bones yielding reproducible and functionally relevant stapedial responses. Hear Res 282(1–2):272–282

    Article  Google Scholar 

  28. Schraven SP, Rak K, Cebulla M, Radeloff A, Grossmann W, Hagen R, Mlynski R (2018) Surgical impact of coupling an active middle ear implant to short incus process. Otol Neurotol 39(6):688–692

    Article  Google Scholar 

  29. Shera CA, Zweig G (1992) An empirical bound on the compressibility of the cochlea. J Acoust Soc Am 92(3):1382–1388

    Article  CAS  Google Scholar 

  30. Snik A, Cremers CWRJ (2004) Audiometric evaluation of an attempt to optimize the fixation of the transducer of a middle-ear implant to the ossicular chain with bone cement. Clin Otolaryngol Allied Sci 29(1):5–9

    Article  CAS  Google Scholar 

  31. Standard ASTM (2014) Strandard of practice for describing system output of Implantable middle ear hearing devices. ASTM Int, West Conshohocken https://doi.org/10.1520/F2504-05

    Book  Google Scholar 

  32. Stenfelt S, Hato N, Goode RL (2004) Fluid volume displacement at the oval and round windows with air and bone conduction stimulation. J Acoust Soc Am 115(2):797–812

    Article  Google Scholar 

  33. Stieger C, Candreia C, Kompis M, Herrmann G, Pfiffner F, Widmer D, Arnold A (2012) Laser doppler vibrometric assessment of middle ear motion in Thiel-embalmed heads. Otol Neurotol 33(3):311–318

    Article  Google Scholar 

  34. Stieger C, Rosowski JJ, Nakajima HH (2013) Comparison of forward (ear-canal) and reverse (round-window) sound stimulation of the cochlea. Hear Res 301:105–114

    Article  Google Scholar 

  35. Todt I, Seidl RO, Gross M, Ernst A (2002) Comparison of different vibrant soundbridge audioprocessors with conventional hearing AIDS. Otol Neurotol 23(5):669–673

    Article  Google Scholar 

  36. Uhler K, Anderson MC, Jenkins HA (2016) Long-term outcome data in patients following one year’s use of a fully implantable active middle ear implant. Audiol Neurotol 21(2):105–112

    Article  Google Scholar 

  37. Wever EG, Lawrence M (1950) The acoustic pathways to the cochlea. J Acoust Soc Am 22(4):460–467

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Schraven.

Ethics declarations

Interessenkonflikt

S.P. Schraven, D. Dohr, N.M. Weiss, R. Mlynski und E. Dalhoff geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schraven, S.P., Dohr, D., Weiss, N.M. et al. Laser-Doppler-vibrometrische Messungen an humanen Felsenbeinen. HNO 69, 491–500 (2021). https://doi.org/10.1007/s00106-021-00995-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00106-021-00995-5

Schlüsselwörter

Keywords

Navigation