Robotik in der Kopf-Hals-Chirurgie

Robot-assisted head and neck surgery


In der klinischen Anwendung gibt es bereits einige für den Kopf-Hals-Bereich zugelassene Assistenzsysteme für die roboterassistierte Chirurgie (RAC). In Teilen des angloamerikanischen Raums hat sich die RAC im Oropharynx zum Standard entwickelt. Große systematische Studien, welche Vergleiche mit etablierten Standardverfahren anstellen, existieren bis heute nicht. Vielmehr wird in experimentellen Arbeiten beschrieben, schlecht zugängliche anatomische Regionen mittels RAC zu erreichen, oder aber es werden Machbarkeitsstudien zur Verwendung von transoraler robotischer Chirurgie (TORS) bei etablierten chirurgischen Operationen angestellt. Bei einem flächendeckenden Einsatz stellt sich bis heute die Frage der Finanzierung des Mehraufwands. Außerdem sollten die auf dem Markt befindlichen technischen Lösungen für einen standardisierten Einsatz in der Kopf-Hals-Chirurgie systematisch verbessert werden.


Robot-assisted surgery (RAS) has already been approved for several clinical applications in head and neck surgery. In some Anglo-American regions, RAS is currently the common standard for treatment of oropharyngeal diseases. Systematic randomized studies comparing established surgical procedures with RAS in a large number of patients are unavailable so far. Experimental publications rather describe how to reach poorly accessible anatomical regions using RAS, or represent feasibility studies on the use of transoral robotic surgery (TORS) in established surgical operations. With general application of RAS in clinical practice, the question of financial reimbursement arises. Furthermore, the technical applications currently on the market still require some specific improvements for routine use in head and neck surgery.

This is a preview of subscription content, access via your institution.

Abb. 1
Abb. 2
Abb. 3
Abb. 4


  1. 1.

    Albus JS (1979) NBS/RIA Robotics Research Workshop: Proceedings of the NBS/RIA Workshop on Robotic Research. Gaithersburg, MD, November 13–15, 1979 National Bureau of Standards, Washington (sponsored by The Robot Institute of America)

    Google Scholar 

  2. 2.

    Arshad H, Durmus K, Ozer E (2013) Transoral robotic resection of selected parapharyngeal space tumors. Eur Arch Otorhinolaryngol 270:1737–1740

    PubMed  Article  Google Scholar 

  3. 3.

    Benito D, Michel MC, Thakkar PG et al (2019) A cost effective custom dental guard for transoral robotic surgery. J Robot Surg 14(1):91–94

    PubMed  Article  Google Scholar 

  4. 4.

    Bly RA, Su D, Lendvay TS et al (2013) Multiportal robotic access to the anterior cranial fossa: a surgical and engineering feasibility study. Otolaryngol Head Neck Surg 149:940–946

    PubMed  PubMed Central  Article  Google Scholar 

  5. 5.

    Burgner-Kahrs J, Rucker DC, Choset H (2015) Continuum robots for medical applications: a survey. IEEE Trans Robot 31:1261–1280

    Article  Google Scholar 

  6. 6.

    Byrd JK, Duvvuri U (2013) Current trends in robotic surgery for otolaryngology. Curr Otorhinolaryngol Rep 1:153–157

    PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Campbell RG (2019) Robotic surgery of the anterior skull base. Int Forum Allergy Rhinol 9:1508–1514

    PubMed  Article  Google Scholar 

  8. 8.

    Carrau RL, Prevedello DM, De Lara D et al (2013) Combined transoral robotic surgery and endoscopic endonasal approach for the resection of extensive malignancies of the skull base. Head Neck 35:E351–358

    PubMed  Article  Google Scholar 

  9. 9.

    Chai YJ, Lee KE, Youn YK (2014) Can robotic thyroidectomy be performed safely in thyroid carcinoma patients? Endocrinol Metab (Seoul) 29:226–232

    Article  Google Scholar 

  10. 10.

    Chan JYW, Chan RCL, Chow VLY et al (2017) Transoral robotic total laryngopharyngectomy and free jejunal flap reconstruction for hypopharyngeal cancer. Oral Oncol 72:194–196

    PubMed  Article  PubMed Central  Google Scholar 

  11. 11.

    Dallan I, Cristofani-Mencacci L, Seccia V et al (2019) Transoral robotic tongue base reduction and supraglottoplasty combined with maxillomandibular advancement: a new option for selected sleep apnea patients? Preliminary report. Eur Arch Otorhinolaryngol 276:3543–3548

    PubMed  Article  Google Scholar 

  12. 12.

    Dean NR, Rosenthal EL, Carroll WR et al (2010) Robotic-assisted surgery for primary or recurrent oropharyngeal carcinoma. Arch Otolaryngol Head Neck Surg 136:380–384

    PubMed  Article  Google Scholar 

  13. 13.

    Doazan M, Hans S, Moriniere S et al (2018) Oncologic outcomes with transoral robotic surgery for supraglottic squamous cell carcinoma: results of the French Robotic Surgery Group of GETTEC. Head Neck 40:2050–2059

    PubMed  Article  Google Scholar 

  14. 14.

    Dombree M, Crott R, Lawson G et al (2014) Cost comparison of open approach, transoral laser microsurgery and transoral robotic surgery for partial and total laryngectomies. Eur Arch Otorhinolaryngol 271:2825–2834

    PubMed  Article  Google Scholar 

  15. 15.

    Dziegielewski PT, Teknos TN, Durmus K et al (2013) Transoral robotic surgery for oropharyngeal cancer: long-term quality of life and functional outcomes. JAMA Otolaryngol Head Neck Surg.

    Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Hans S, Jouffroy T, Veivers D et al (2013) Transoral robotic-assisted free flap reconstruction after radiation therapy in hypopharyngeal carcinoma: report of two cases. Eur Arch Otorhinolaryngol 270:2359–2364

    PubMed  Article  Google Scholar 

  17. 17.

    Henry LE, Haugen TW, Rassekh CH et al (2019) A novel transpalatal-transoral robotic surgery approach to clival chordomas extending into the nasopharynx. Head Neck 41:E133–e140

    PubMed  Google Scholar 

  18. 18.

    Hoffmann T, Friedrich D, Schuler P (2016) Robotergestützte Chirurgie im Kopf-Hals-Bereich. HNO 64:658–666

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Hoffmann TK (2020) ORATOR study: surgery or radiotherapy for oropharyngeal carcinoma in the context of HPV? HNO 68:278–279

    PubMed  Article  Google Scholar 

  20. 20.

    Hoffmann TK, Schuler PJ, Bankfalvi A et al (2014) Comparative analysis of resection tools suited for transoral robot-assisted surgery. Eur Arch Otorhinolaryngol 271:1207–1213

    PubMed  Article  PubMed Central  Google Scholar 

  21. 21.

    Holsinger FC, Magnuson JS, Weinstein GS et al (2019) A next-generation single-port robotic surgical system for transoral robotic surgery: results from prospective nonrandomized clinical trials. JAMA Otolaryngol Head Neck Surg 145:1027–1034

    PubMed Central  Article  Google Scholar 

  22. 22.

    Hurtuk AM, Marcinow A, Agrawal A et al (2012) Quality-of-life outcomes in transoral robotic surgery. Otolaryngol Head Neck Surg 146:68–73

    PubMed  Article  PubMed Central  Google Scholar 

  23. 23.

    Hussain T, Lang S, Hasskamp P et al (2020) The Flex robotic system compared to transoral laser microsurgery for the resection of supraglottic carcinomas: first results and preliminary oncologic outcomes. Eur Arch Otorhinolaryngol 277:917–924

    PubMed  Article  PubMed Central  Google Scholar 

  24. 24.

    Kang SW, Lee SC, Lee SH et al (2009) Robotic thyroid surgery using a gasless, transaxillary approach and the da Vinci S system: the operative outcomes of 338 consecutive patients. Surgery 146:1048–1055

    PubMed  Article  PubMed Central  Google Scholar 

  25. 25.

    Kang SW, Lee SH, Ryu HR et al (2010) Initial experience with robot-assisted modified radical neck dissection for the management of thyroid carcinoma with lateral neck node metastasis. Surgery 148:1214–1221

    PubMed  Article  PubMed Central  Google Scholar 

  26. 26.

    Kundrat D, Schoob A, Piskon T et al (2019) Toward assistive technologies for focus adjustment in teleoperated robotic non-contact laser surgery. IEEE Trans Med Robot Bionics 1(3):145–157

    Article  Google Scholar 

  27. 27.

    Lang S, Mattheis S, Hasskamp P et al (2017) A european multicenter study evaluating the flex robotic system in transoral robotic surgery. Laryngoscope 127:391–395

    PubMed  Article  PubMed Central  Google Scholar 

  28. 28.

    Lawson G, Mendelsohn A, Fakhoury R et al (2018) Transoral robotic surgery total laryngectomy. Orl J Otorhinolaryngol Relat Spec 80:171–177

    PubMed  Article  PubMed Central  Google Scholar 

  29. 29.

    Leal Ghezzi T, Campos Corleta O (2016) 30 years of robotic surgery. World J Surg 40:2550–2557

    PubMed  Article  PubMed Central  Google Scholar 

  30. 30.

    Lee HS, Kim WS, Hong HJ et al (2012) Robot-assisted Supraomohyoid neck dissection via a modified face-lift or retroauricular approach in early-stage cN0 squamous cell carcinoma of the oral cavity: a comparative study with conventional technique. Ann Surg Oncol 19:3871–3878

    PubMed  Article  Google Scholar 

  31. 31.

    Lobe TE, Wright SK, Irish MS (2005) Novel uses of surgical robotics in head and neck surgery. J Laparoendosc Adv Surg Tech A 15:647–652

    PubMed  Article  Google Scholar 

  32. 32.

    Mattheis S, Mandapathil M, Rothmeier N et al (2012) Transoral robotic surgery for head and neck tumors: a series of 17 patients. Laryngorhinootologie 91:768–773

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Mattheis S, Schluter A, Stahr K et al (2019) First use of a new robotic endoscope guiding system in endoscopic orbital decompression. Ear Nose Throat J.

    Article  PubMed  Google Scholar 

  34. 34.

    Mattos LS, Deshpande N, Barresi G et al (2014) A novel computerized surgeon-machine interface for robot-assisted laser phonomicrosurgery. Laryngoscope 124:1887–1894

    PubMed  Article  Google Scholar 

  35. 35.

    Messerklinger W (1978) Endoscopy of the nose. Urban und Schwarzenberg, München

    Google Scholar 

  36. 36.

    Morisod B, Guinchard AC, Gorphe P et al (2018) Transoral robotic-assisted supracricoid partial laryngectomy with cricohyoidoepiglottopexy: procedure development and outcomes of initial cases. Head Neck 40:2254–2262

    PubMed  Article  Google Scholar 

  37. 37.

    Nichols AC, Theurer J, Prisman E et al (2019) Radiotherapy versus transoral robotic surgery and neck dissection for oropharyngeal squamous cell carcinoma (ORATOR): an open-label, phase 2, randomised trial. Lancet Oncol 20:1349–1359

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  38. 38.

    O’malley BW Jr., Quon H, Leonhardt FD et al (2010) Transoral robotic surgery for parapharyngeal space tumors. ORL J Otorhinolaryngol Relat Spec 72:332–336

    PubMed  Article  Google Scholar 

  39. 39.

    Orosco RK, Tam K, Nakayama M et al (2019) Transoral supraglottic laryngectomy using a next-generation single-port robotic surgical system. Head Neck 41:2143–2147

    PubMed  Article  Google Scholar 

  40. 40.

    Ozer E, Waltonen J (2008) Transoral robotic nasopharyngectomy: a novel approach for nasopharyngeal lesions. Laryngoscope 118:1613–1616

    PubMed  Article  Google Scholar 

  41. 41.

    Panda S, Sikka K, Thakar A et al (2019) Transoral robotic surgery for the parapharyngeal space: expanding the transoral corridor. J Robot Surg 14(1):61–67

    PubMed  Article  Google Scholar 

  42. 42.

    Park YM, Byeon HK, Chung HP et al (2013) Comparison study of transoral robotic surgery and radical open surgery for hypopharyngeal cancer. Acta Otolaryngol 133:641–648

    PubMed  Article  Google Scholar 

  43. 43.

    Park YM, Cha D, Koh YW et al (2019) Transoral robotic surgery with transoral retropharyngeal lymph node dissection in patients with tonsillar cancer: anatomical points, surgical techniques, and clinical usefulness. J Craniofac Surg 30:145–148

    PubMed  Article  Google Scholar 

  44. 44.

    Park YM, Jung CM, Cha D et al (2017) The long-term oncological and functional outcomes of transoral robotic surgery in patients with hypopharyngeal cancer. Oral Oncol 71:138–143

    PubMed  Article  Google Scholar 

  45. 45.

    Park YM, Kim DH, Kang MS et al (2019) The first human trial of transoral robotic surgery using a single-port robotic system in the treatment of laryngo-pharyngeal cancer. Ann Surg Oncol 26:4472–4480

    PubMed  Article  Google Scholar 

  46. 46.

    Parmar A, Grant DG, Loizou P (2010) Robotic surgery in ear nose and throat. Eur Arch Otorhinolaryngol 267:625–633

    PubMed  Article  Google Scholar 

  47. 47.

    Remacle M, Mnprasad V, Lawson G et al (2015) Transoral robotic surgery (TORS) with the medrobotics flex system: first surgical application on humans. Eur Arch Otorhinolaryngol 272:1451–1455

    CAS  PubMed  Article  Google Scholar 

  48. 48.

    Remacle M, Prasad VMN (2018) Preliminary experience in transoral laryngeal surgery with a flexible robotic system for benign lesions of the vocal folds. Eur Arch Otorhinolaryngol 275:761–765

    PubMed  Article  Google Scholar 

  49. 49.

    Richmon JD, Quon H, Gourin CG (2014) The effect of transoral robotic surgery on short-term outcomes and cost of care after oropharyngeal cancer surgery. Laryngoscope 124:165–171

    PubMed  Article  Google Scholar 

  50. 50.

    Samalavicius NE, Janusonis V, Siaulys R et al (2019) Robotic surgery using Senhance® robotic platform: single center experience with first 100 cases. J Robot Surg.

    Article  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Schuler PJ, Duvvuri U, Friedrich DT et al (2015) First use of a computer-assisted operator-controlled flexible endoscope for transoral surgery. Laryngoscope 125:645–648

    PubMed  Article  PubMed Central  Google Scholar 

  52. 52.

    Schuler PJ, Hoffmann TK, Veit JA et al (2016) Hybrid procedure for total laryngectomy with a flexible robot-assisted surgical system. Int J Med Robot.

    Article  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Seeliger B, Diana M, Ruurda J et al (2019) Enabling single-site laparoscopy: the SPORT platform. Surg Endosc 33:3696–3703

    PubMed  PubMed Central  Article  Google Scholar 

  54. 54.

    Sethi N, Gouzos M, Padhye V et al (2019) Transoral robotic surgery using the Medrobotic Flex® system: the Adelaide experience. J Robot Surg 14(1):109–113

    PubMed  Article  PubMed Central  Google Scholar 

  55. 55.

    Sher DJ, Fidler MJ, Tishler RB et al (2016) Cost-effectiveness analysis of chemoradiation therapy versus transoral robotic surgery for human papillomavirus-associated, clinical N2 oropharyngeal cancer. Int J Radiat Oncol Biol Phys 94:512–522

    PubMed  Article  Google Scholar 

  56. 56.

    Song CM, Cho YH, Ji YB et al (2013) Comparison of a gasless unilateral axillo-breast and axillary approach in robotic thyroidectomy. Surg Endosc 27:3769–3775

    PubMed  Article  Google Scholar 

  57. 57.

    Su H, Yang C, Ferrigno G et al (2019) Improved human–robot collaborative control of redundant robot for teleoperated minimally invasive surgery. IEEE Robot Autom Lett 4:1447–1453

    Article  Google Scholar 

  58. 58.

    Tae K, Ji YB, Song CM et al (2013) Robotic selective neck dissection using a gasless postauricular facelift approach for early head and neck cancer: technical feasibility and safety. J Laparoendosc Adv Surg Tech A 23:240–245

    PubMed  Article  Google Scholar 

  59. 59.

    Tam K, Orosco RK, Dimitrios Colevas A et al (2019) Cost comparison of treatment for oropharyngeal carcinoma. Laryngoscope 129:1604–1609

    PubMed  Article  Google Scholar 

  60. 60.

    Tan Wen Sheng B, Wong P, Teo Ee Hoon C (2018) Transoral robotic excision of laryngeal papillomas with Flex(R) Robotic System—A novel surgical approach. Am J Otolaryngol 39:355–358

    PubMed  Article  PubMed Central  Google Scholar 

  61. 61.

    Troob S, Givi B, Hodgson M et al (2017) Transoral robotic retropharyngeal node dissection in oropharyngeal squamous cell carcinoma: patterns of metastasis and functional outcomes. Head Neck 39:1969–1975

    PubMed  Article  PubMed Central  Google Scholar 

  62. 62.

    Tsang RK, To VS, Ho AC et al (2015) Early results of robotic assisted nasopharyngectomy for recurrent nasopharyngeal carcinoma. Head Neck 37:788–793

    PubMed  Article  PubMed Central  Google Scholar 

  63. 63.

    Turhan M, Bostanci A (2019) Robotic tongue-base resection combined with tongue-base suspension for obstructive sleep apnea. Laryngoscope.

    Article  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Turner MT, Geltzeiler M, Albergotti WG et al (2019) Reconstruction of TORS oropharyngectomy defects with the nasoseptal flap via transpalatal tunnel. J Robot Surg.

    Article  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Wall V, Zoller G, Brock O (2017) A method for sensorizing soft actuators and its application to the RBO hand 2. In: IEEE International Conference on Robotics and Automation ICRA, Singapore, S 4965–4970

    Google Scholar 

  66. 66.

    Wang EW, Zanation AM, Gardner PA et al (2019) ICAR: endoscopic skull-base surgery. Int Forum Allergy Rhinol 9:S145–s365

    PubMed  Article  PubMed Central  Google Scholar 

  67. 67.

    Weinstein GS, O’malley BW Jr., Magnuson JS et al (2012) Transoral robotic surgery: a multicenter study to assess feasibility, safety, and surgical margins. Laryngoscope 122:1701–1707

    PubMed  Article  PubMed Central  Google Scholar 

  68. 68.

    Yin Tsang RK, Ho WK, Wei WI (2012) Combined transnasal endoscopic and transoral robotic resection of recurrent nasopharyngeal carcinoma. Head Neck 34:1190–1193

    PubMed  Article  PubMed Central  Google Scholar 

  69. 69.

    Burgner J, Rucker DC, Gilbert HB et al (2013) A telerobotic system for transnasal surgery. IEEE ASME Trans Mechatron 19(3):996–1006

    PubMed  PubMed Central  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Prof. Dr. med. P. J. Schuler.

Ethics declarations


P.J. Schuler, F. Boehm, L.R. Schild, J. Greve und T.K. Hoffmann haben keine finanzielle Unterstützung für die Autorenschaft oder Publikation dieses Artikels erhalten. Die Autoren haben an der klinischen Studie der Fa. Medrobotics (NCT02262247) teilgenommen.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Die Autoren P.J. Schuler und F. Boehm haben zu gleichen Teilen zum Manuskript beigetragen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schuler, P.J., Boehm, F., Schild, L.R. et al. Robotik in der Kopf-Hals-Chirurgie. HNO 69, 131–139 (2021).

Download citation


  • Computerassistierte Chirurgie
  • Roboterunterstützte chirurgische Verfahren
  • Therapieergebnis
  • Kopf-Hals-Tumoren
  • Gesundheitskosten


  • Computer-assisted surgery
  • Robotic surgical procedures
  • Treatment outcome
  • Head and neck neoplasms
  • Health care costs