Funktion und Physiologie der Kieferhöhle

Function and physiology of the maxillary sinus

A Leserbriefe to this article was published on 21 December 2020

A Leserbriefe to this article was published on 21 December 2020

Zusammenfassung

Hintergrund

Schon seit vielen Jahrzenten stellt die Frage nach der „wahren“ Funktion der Kieferhöhle bzw. den Nasennebenhöhlen (NNH) einen Streitpunkt in der Literatur dar und hat zu vielen kontroversen Diskussionen sowie Spekulationen geführt.

Ziel

Das Review fasst kurz verschiedene Theorien über die mögliche Physiologie und mögliche Funktionen der Kieferhöhle/NNH zusammen, die über die Jahrhunderte bis heute diskutiert wurden.

Material und Methoden

Eine Literaturrecherche bei PubMed wurde mit einer Kombination der Suchbegriffe „Physiologie“, „Funktion“, „Kieferhöhle“ und „Nasennebenhöhle“ durchgeführt.

Ergebnisse

Die aktuellen und möglichst wissenschaftlich belegten Theorien werden beschrieben. Die „Sinusologie“ ist die Wissenschaft der NNH. Die Kieferhöhlen können einfach nur dazu dienen, die respiratorische Funktion der Nase zu verbessern. Eine Durchströmung mit inspiratorischer Luft findet nicht statt. Die Kieferhöhlen sind an der Produktion von Stickstoffmonoxid (NO) und damit der Unterstützung der Immunabwehr der Nasenhöhle entscheidend beteiligt. Die Mukosa der Kieferhöhle synthetisiert kontinuierlich NO und dient damit als Reservoir von NO. Weitere wichtige Funktionen sind der Schutz der Orbita und des Gehirn bei Schädelfrakturen sowie eine Gewichtsreduktion des Schädels.

Schlussfolgerung

Die verschiedenen Theorien über die Funktion der Nasennebenhöhlen werfen auch heute noch viele Fragen auf, und die wahre Funktion ist nicht vollständig geklärt. Mögliche Funktionen der Kieferhöhlen bestehen bei der lokalen Immunabwehr durch die Produktion von NO. Die NNH dienen als „Knautschzone“ im Rahmen von Schädel-Hirn-Traumata.

Abstract

Background

The question of the “true” function of the maxillary sinus and the paranasal sinuses (PS) has been a controversial issue in the literature for decades, leading to many discussions and speculations.

Objective

This review briefly summarizes various theories on the possible physiology and functions of the maxillary sinus/PS that have been discussed over the centuries.

Materials and methods

A literature search was conducted in PubMed using a combination of the search terms “physiology,” “function,” “maxillary sinus,” and “paranasal sinuses.”

Results

Current and scientifically evidenced theories are described. “Sinusology” is the science of the PS. The maxillary sinuses might simply serve to improve the respiratory function of the nose. A flow of inspiratory air does not occur. The maxillary sinuses are decisively involved in the production of nitrogen monoxide (NO) and thus in supporting the immune defense of the nasal cavity. The mucosa of the maxillary sinus continuously synthesizes NO and serves as a reservoir of NO. Other important functions are protection of the orbit and the brain in case of skull fractures, as well as weight reduction of the skull.

Conclusion

The various theories about the function of the PS still raise many questions and their true function is yet not fully understood. Possible functions of the maxillary sinuses are local immune defense through the production of NO. The PS serve as a crumple zone for vital cerebral structures in the context of craniocerebral traumas.

This is a preview of subscription content, access via your institution.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. 1.

    Alnafisah AM, Hameed S (2020) Aplasia of the maxillary sinus, a large periapical cyst in the maxillary arch, and a swimming and kissing molar. A rare case report. Cureus 12(2):e6859

    PubMed  PubMed Central  Google Scholar 

  2. 2.

    Amine K, Slaoui S, Kanice F‑Z, Kissa J (2020) Evaluation of maxillary sinus anatomical variations and lesions. A retrospective analysis using cone beam computed tomography. J Stomatol Oral Maxillofac Surg. https://doi.org/10.1016/j.jormas.2019.12.021

    Article  Google Scholar 

  3. 3.

    Aust R, Stierna P, Drettner B (1994) Basic experimental studies of ostial patency and local metabolic environment of the maxillary sinus. Acta Otolaryngol 114(sup515):7–10 (discussion 11)

    Google Scholar 

  4. 4.

    Baykara M, Erdogan N, Öztürk M, Erkan M (2002) Maxillary sinus aplasia. Turk J Med Sci 32:273–275

    Google Scholar 

  5. 5.

    Biggs NL, Blanton PL (1970) The role of paranasal sinuses as weight reducers of the head determined by electromyography of postural neck muscles. J Biomech 3(3):255–262

    CAS  Google Scholar 

  6. 6.

    Bolger WE, Woodruff WW, Morehead J, Parsons DS (1990) Maxillary sinus hypoplasia. Classification and description of associated uncinate process hypoplasia. Otolaryngol Head Neck Surg 103(5):759–765

    CAS  Google Scholar 

  7. 7.

    Chrcanovic BR, Freire-Maia B (2010) Maxillary sinus aplasia. Oral Maxillofac Surg 14(3):187–191

    Google Scholar 

  8. 8.

    Chung S‑K, Kim D‑W, Na Y (2016) Numerical study on the effect of uncinectomy on airflow modification and ventilation characteristics of the maxillary sinus. Respir Physiol Neurobiol 228:47–60

    Google Scholar 

  9. 9.

    Cloquet H (1830) A system of human anatomy. Wells and Lilly, Boston

    Google Scholar 

  10. 10.

    Croen KD (1993) Evidence for antiviral effect of nitric oxide. Inhibition of herpes simplex virus type 1 replication. J Clin Invest 91(6):2446–2452

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Skillern RH (1920) Accessory sinuses of the nose, 2. Aufl. Lippincott, Philadelphia (cited from Da Vinci L (1452))

    Google Scholar 

  12. 12.

    Da Vinci L (1489) The skull sectioned. https://www.rct.uk/collection/search#/1/collection/919058/recto-the-cranium-sectioned-verso-the-skull-sectioned. Zugegriffen: 1. Apr. 2020

  13. 13.

    Flottes L, Clere P, Rui R, Devilla F (1960) La Physiologie des Sinus (Societe Francaise D’Oto-Rhino-Laryngologie). Libraire Arnette, Paris, S 359–360

    Google Scholar 

  14. 14.

    Formby ML (1960) The maxillary sinus. Proc R Soc Med 53:163–168

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Förstermann U, Closs EI, Pollock JS, Nakane M, Schwarz P, Gath I, Kleinert H (1994) Nitric oxide synthase isozymes. Characterization, purification, molecular cloning, and functions. Hypertension 23(6 Pt 2):1121–1131

    PubMed  PubMed Central  Google Scholar 

  16. 16.

    Galen (1968) Galen De Usu Partium, 1x, 2 et. seq. (Kuhn) III. Cornell University Press, New York, S 691 (Translation by Tallamadge M.)

    Google Scholar 

  17. 17.

    Güçlü O, Uludağ A, Akçali A, Tekin K, Erdoğan H, Silan F, Dereköy FS (2012) Does the maxillary sinus have a triggering role in nasal nitric oxide synthesis? Rhinology 50(4):402–407

    PubMed  PubMed Central  Google Scholar 

  18. 18.

    Haller A (1763) Elementa physiologiae corporis humani. Liber XIV. 5, p180, (cited by Wright J (1914) A history of laryngology and rhinology, 2nd edn., Lea and Febiger, New York, 169)

  19. 19.

    Hardy A (1960) Was man more aquatic in the past? New Sci 7:642–645

    Google Scholar 

  20. 20.

    Highmore N (1651) Corp human disquisition Anatom, Hagae

  21. 21.

    Hippocrates (1992) Collected writings Bd. 4. Cactus, Athens

    Google Scholar 

  22. 22.

    Holden WE, Wilkins JP, Harris M, Milczuk HA, Giraud GD (1999) Temperature conditioning of nasal air. Effects of vasoactive agents and involvement of nitric oxide. J Appl Physiol (1985) 87(4):1260–1265

    CAS  Google Scholar 

  23. 23.

    Howell HP (1917) Voice production from the standpoint of the laryngologist. Ann Otol Rhinol Laryngol 26:643–655

    Google Scholar 

  24. 24.

    Jain B, Rubinstein I, Robbins RA, Leise KL, Sisson JH (1993) Modulation of airway epithelial cell ciliary beat frequency by nitric oxide. Biochem Biophys Res Commun 191(1):83–88

    CAS  Google Scholar 

  25. 25.

    Jankowski R (2013) The evo-devo origin of the nose, anterior skull base and midface. Springer, Paris

    Google Scholar 

  26. 26.

    Jankowski R, Nguyen DT, Poussel M, Chenuel B, Gallet P, Rumeau C (2016) Sinusology. Eur Ann Otorhinolaryngol Head Neck Dis 133(4):263–268

    CAS  Google Scholar 

  27. 27.

    Keir J (2009) Why do we have paranasal sinuses? J Laryngol Otol 123(1):4–8

    CAS  Google Scholar 

  28. 28.

    Kellman RM, Schmidt C (2009) The paranasal sinuses as a protective crumple zone for the orbit. Laryngoscope 119(9):1682–1690

    Google Scholar 

  29. 29.

    Kirihene R, Rees G, Wormald PJ (2002) The influence of the size of the maxillary sinus ostium on the nasal and sinus nitric oxide levels. Am J Rhinol 16(5):261–264

    Google Scholar 

  30. 30.

    Koertvelyessy T (1972) Relationships between the frontal sinus and climatic conditions. A skeletal approach to cold adaptation. Am J Phys Anthropol 37(2):161–172

    CAS  Google Scholar 

  31. 31.

    Koo SK, Kwon SB, Chon KM, Kim YJ, Kim YJ (2015) The role of the maxillary sinus on the voice. Eur Arch Otorhinolaryngol 272(9):2347–2350

    PubMed  PubMed Central  Google Scholar 

  32. 32.

    Lee TS, Kellman RM, Darling A (2014) Crumple zone effect of nasal cavity and paranasal sinuses on posterior cranial fossa. Laryngoscope 124(10):2241–2246

    PubMed  PubMed Central  Google Scholar 

  33. 33.

    Levine H, Clemente MP (2005) Sinus surgery: endoscopic and microscopic approaches. Thieme, Stuttgart, S 57–62

    Google Scholar 

  34. 34.

    Lindberg S, Cervin A, Runer T (1997) Nitric oxide (NO) production in the upper airways is decreased in chronic sinusitis. Acta Otolaryngol 117(1):113–117

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Lindemann J, Brambs H‑J, Keck T, Wiesmiller KM, Rettinger G, Pless D (2005) Numerical simulation of intranasal airflow after radical sinus surgery. Am J Otolaryngol 26(3):175–180

    PubMed  PubMed Central  Google Scholar 

  36. 36.

    Lundberg JO (2008) Nitric oxide and the paranasal sinuses. Anat Rec (Hoboken) 291(11):1479–1484

    Google Scholar 

  37. 37.

    Lundberg JO, Rinder J, Weitzberg E, Lundberg JM, Alving K (1994) Nasally exhaled nitric oxide in humans originates mainly in the paranasal sinuses. Acta Physiol Scand 152(4):431–432

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Lundberg JO, Farkas-Szallasi T, Weitzberg E, Rinder J, Lidholm J, Anggåard A, Hökfelt T, Lundberg JM, Alving K (1995) High nitric oxide production in human paranasal sinuses. Nat Med 1(4):370–373

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Mancinelli RL, McKay CP (1983) Effects of nitric oxide and nitrogen dioxide on bacterial growth. Appl Environ Microbiol 46(1):198–202

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Maniscalco M, Weitzberg E, Sundberg J, Sofia M, Lundberg JO (2003) Assessment of nasal and sinus nitric oxide output using single-breath humming exhalations. Eur Respir J 22(2):323–329

    CAS  Google Scholar 

  41. 41.

    Mavrodi A, Paraskevas G (2013) Evolution of the paranasal sinuses’ anatomy through the ages. Anat Cell Biol 46(4):235–238

    PubMed  PubMed Central  Google Scholar 

  42. 42.

    Mygind N, Winther B (1987) Immunological barriers in the nose and paranasal sinuses. Acta Otolaryngol 103(5-6):363–368

    CAS  Google Scholar 

  43. 43.

    Naraghi M, Deroee AF, Ebrahimkhani M, Kiani S, Dehpour A (2007) Nitric oxide: a new concept in chronic sinusitis pathogenesis. Am J Otolaryngol 28(5):334–337

    CAS  Google Scholar 

  44. 44.

    Negus V (1957) The function of the paranasal sinuses. AMA Arch Otolaryngol 66(4):430–442

    CAS  Google Scholar 

  45. 45.

    Nogueira JF, Hermann DR, dos ReisAmérico R, Barauna Filho IS, Stamm AEC, Pignatari SSN (2007) A brief history of otorhinolaryngolgy. Otology, laryngology and rhinology. Braz J Otorhinolaryngol 73(5):693–703

    Google Scholar 

  46. 46.

    O’Malley CD, Saunders JC (1952) Leonardo da Vinci on the human body: the anatomical physiological and embryological drawings of Leonardo da Vinci. H. Schuman, New York

    Google Scholar 

  47. 47.

    Proetz AW (1922) Observations upon the formation and function of the accessory nasal sinuses and the mastoid air cells. Ann Otol Rhinol Laryngol 31:1083–1100

    Google Scholar 

  48. 48.

    Proetz AW (1953) Applied physiology of the nose, 2. Aufl. Annales Publishing, Saint Louis, S 7–68

    Google Scholar 

  49. 49.

    Rhŷs Evans PH (1992) The paranasal sinuses and other enigmas. An aquatic evolutionary theory. J Laryngol Otol 106(3):214–225

    Google Scholar 

  50. 50.

    Shiki K, Tanaka T, Kito S, Wakasugi-Sato N, Matsumoto-Takeda S, Oda M, Nishimura S, Morimoto Y (2014) The significance of cone beam computed tomography for the visualization of anatomical variations and lesions in the maxillary sinus for patients hoping to have dental implant-supported maxillary restorations in a private dental office in Japan. Head Face Med 10:20

    PubMed  PubMed Central  Google Scholar 

  51. 51.

    Tillier AM (1975) Les Sinus Craniens chez les Hommes Actuels et Fossils: Essai d’Interprétation, PhD thesis, Paris: University of Paris

  52. 52.

    Vesalius A (1542) De Humani Corporis Fabrica, Lib 1, Cap VI-IX (cited by Wright, ibid, 168)

  53. 53.

    Watelet JB, van Cauwenberge P (1999) Applied anatomy and physiology of the nose and paranasal sinuses. Allergy 54(Suppl 57):14–25

    Google Scholar 

  54. 54.

    Williams PL, Warwick R (1980) Gray’s anatomy, 36. Aufl. Churchill Livingstone, Edinburgh

    Google Scholar 

  55. 55.

    Zang H, Wu J, Hu C, Li L, Liu Y, Yu S, Zhou B, Han D (2015) Study on the correlation between the ostia diameter changes and airflow characteristics in maxillary sinus. Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi 50(10):805–809

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to H. L. Sieron.

Ethics declarations

Interessenkonflikt

H.L. Sieron, F. Sommer, T.K. Hoffmann, A.-S. Grossi, M.O. Scheithauer, F. Stupp und J. Lindemann geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sieron, H.L., Sommer, F., Hoffmann, T.K. et al. Funktion und Physiologie der Kieferhöhle. HNO 68, 566–572 (2020). https://doi.org/10.1007/s00106-020-00869-2

Download citation

Schlüsselwörter

  • Nasennebenhöhlen
  • Trauma
  • Respiratorisches System
  • Stimme
  • Stickstoffmonoxid

Keywords

  • Paranasal sinuses
  • Trauma
  • Respiratory system
  • Voice
  • Nitrogen monoxide