Skip to main content
Log in

Differenzierung cochleärer Synaptopathien in verschiedene Hörstörungen

Differentiating cochlear synaptopathies into different hearing disorders

  • Leitthema
  • Published:
HNO Aims and scope Submit manuscript

Zusammenfassung

Demografischer Wandel und verändertes Freizeitverhalten lassen in den nächsten 20–30 Jahren eine rapide Zunahme von Hörstörungen erwarten. Damit steigt das Risiko, an altersbedingtem Sprachdiskriminationsverlust, Tinnitus, Hyperakusis oder, wie neueste Studien postulieren, an Demenz zu erkranken. Es verdichten sich Hinweise darauf, dass bei Mensch und Tier der Verlust spezifischer Hörfasern an verschiedenen Hörstörungen beteiligt ist. Dieser Hörfaserverlust kann durch cochleäre Synaptopathie oder Deafferenzierung verursacht werden und führt nicht zwangsläufig zu klinisch messbaren Hörschwellenabweichungen. Tierexperimentell wurde belegt, dass eine verminderte Hörnervaktivität nach akustischem Trauma oder durch Alter zentral über eine disproportional erhöhte und schnellere akustisch evozierte Stammhirnantwort kompensiert werden kann. Die Analyse der überschwelligen Amplituden von auditorisch evozierten Hirnstammpotenzialen und deren Latenz in Kombination mit nichtinvasiven bildgebenden Techniken wie die Magnetresonanztomographie können helfen die zentrale Kompensationsfähigkeit von Probanden zu identifizieren und definierten Hördefiziten zuzuordnen.

Abstract

Due to demographic change and altered recreational behavior, a rapid increase in hearing deficits is expected in the next 20–30 years. Consequently, the risk of age-related loss of speech discrimination, tinnitus, hyperacusis, or—as recently shown—dementia, will also increase. There are increasing indications that the loss of specific hearing fibers in humans and animals is involved in various hearing disorders. This fiber loss can be caused by cochlear synaptopathy or deafferentation and does not necessarily lead to clinically measurable threshold changes. Animal experiments have shown that reduced auditory nerve activity due to acoustic trauma or aging can be centrally compensated by disproportionately elevated and faster auditory brainstem responses (ABR). The analysis of the suprathreshold amplitudes of auditory evoked brain stem potentials and their latency in combination with non-invasive imaging techniques such as magnetic resonance imaging can help to identify the central compensatory ability of subjects and to assign defined hearing deficits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Abbreviations

ABR:

Akustisch evozierte Hirnstammpotenziale

ASSR:

Evozierte Potenziale nach Exposition von amplitudenmodulierten Tönen

BA:

Brodmann-Region

BOLD:

„Blood oxygenation level dependent“

dB:

Dezibel

fMRT:

Funktionelle Magnetresonanztomographie

ms:

Millisekunden

r-fcMRT:

„Resting state functional connectivity MRT“

SPL:

Schalldruckpegel

Literatur

  1. Aazh H, Moore BCJ (2018) Effectiveness of audiologist-delivered cognitive behavioral therapy for tinnitus and hyperacusis rehabilitation: outcomes for patients treated in routine practice. Am J Audiol 27:547–558

    Article  Google Scholar 

  2. Adjamian P, Sereda M, Hall DA (2009) The mechanisms of tinnitus: perspectives from human functional neuroimaging. Hear Res 253:15–31

    Article  Google Scholar 

  3. Ardila A, Bernal B, Rosselli M (2016) The language area of the brain: a functional reassessment. Rev Neurol 62:97–106

    PubMed  Google Scholar 

  4. Auerbach BD, Rodrigues PV, Salvi RJ (2014) Central gain control in tinnitus and hyperacusis. Front Neurol 5:206

    Article  Google Scholar 

  5. Bharadwaj HM, Verhulst S, Shaheen L et al (2014) Cochlear neuropathy and the coding of supra-threshold sound. Front Syst Neurosci 8:26

    Article  Google Scholar 

  6. Biswal B, Yetkin FZ, Haughton VM et al (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34:537–541

    Article  CAS  Google Scholar 

  7. Chen YC, Xia W, Chen H et al (2017) Tinnitus distress is linked to enhanced resting-state functional connectivity from the limbic system to the auditory cortex. Hum Brain Mapp 38:2384–2397

    Article  Google Scholar 

  8. Chumak T, Ruttiger L, Lee SC et al (2016) BDNF in lower brain parts modifies auditory fiber activity to gain fidelity but increases the risk for generation of central noise after injury. Mol Neurobiol 53:5607–5627

    Article  CAS  Google Scholar 

  9. Cieslik EC, Mueller VI, Eickhoff CR et al (2015) Three key regions for supervisory attentional control: evidence from neuroimaging meta-analyses. Neurosci Biobehav Rev 48:22–34

    Article  Google Scholar 

  10. Eggermont JJ (2013) Hearing loss, hyperacusis, or tinnitus: what is modeled in animal research? Hear Res 295:140–149

    Article  Google Scholar 

  11. Engelien A, Schulz M, Ross B et al (2000) A combined functional in vivo measure for primary and secondary auditory cortices. Hear Res 148:153–160

    Article  CAS  Google Scholar 

  12. Epp B, Hots J, Verhey JL et al (2012) Increased intensity discrimination thresholds in tinnitus subjects with a normal audiogram. J Acoust Soc Am 132:EL196–EL201

    Article  CAS  Google Scholar 

  13. Flor H, Hoffmann D, Struve M et al (2004) Auditory discrimination training for the treatment of tinnitus. Appl Psychophysiol Biofeedback 29:113–120

    Article  Google Scholar 

  14. Fournier P, Hebert S (2013) Gap detection deficits in humans with tinnitus as assessed with the acoustic startle paradigm: does tinnitus fill in the gap? Hear Res 295:16–23

    Article  Google Scholar 

  15. Frisina RD (2009) Age-related hearing loss: ear and brain mechanisms. Ann N Y Acad Sci 1170:708–717

    Article  Google Scholar 

  16. Frisina RD, Frisina DR (2013) Physiological and neurobiological bases of age-related hearing loss: biotherapeutic implications. Am J Audiol 22:299–302

    Article  Google Scholar 

  17. Furman AC, Kujawa SG, Liberman MC (2013) Noise-induced cochlear neuropathy is selective for fibers with low spontaneous rates. J Neurophysiol 110:577–586

    Article  Google Scholar 

  18. Garcia-Rosales F, Martin LM, Beetz MJ et al (2018) Low-frequency spike-field coherence is a fingerprint of periodicity coding in the auditory cortex. iScience 9:47–62

    Article  Google Scholar 

  19. Geven LI, De Kleine E, Free RH et al (2011) Contralateral suppression of otoacoustic emissions in tinnitus patients. Otol Neurotol 32:315–321

    Article  Google Scholar 

  20. Gordon-Salant S (2005) Hearing loss and aging: new research findings and clinical implications. J Rehabil Res Dev 42:9–24

    Article  Google Scholar 

  21. Grefkes C, Eickhoff SB, Fink GR (2013) Konnektivität. https://www.researchgate.net/publication/301167884_Konnektivitat

  22. Gu JW, Halpin CF, Nam EC et al (2010) Tinnitus, diminished sound-level tolerance, and elevated auditory activity in humans with clinically normal hearing sensitivity. J Neurophysiol 104:3361–3370

    Article  Google Scholar 

  23. Heil P, Neubauer H, Brown M et al (2008) Towards a unifying basis of auditory thresholds: distributions of the first-spike latencies of auditory-nerve fibers. Hear Res 238:25–38

    Article  Google Scholar 

  24. Herman GE, Warren LR, Wagener JW (1977) Auditory lateralization: age differences in sensitivity to dichotic time and amplitude cues. J Gerontol 32:187–191

    Article  Google Scholar 

  25. Herraiz C, Diges I, Cobo P (2007) Auditory discrimination therapy (ADT) for tinnitus management. Prog Brain Res 166:467–471

    Article  CAS  Google Scholar 

  26. Herraiz C, Diges I, Cobo P et al (2010) Auditory discrimination training for tinnitus treatment: the effect of different paradigms. Eur Arch Otorhinolaryngol 267:1067–1074

    Article  Google Scholar 

  27. Hickox AE, Liberman MC (2014) Is noise-induced cochlear neuropathy key to the generation of hyperacusis or tinnitus? J Neurophysiol 111:552–564

    Article  Google Scholar 

  28. Hofmeier B, Wolpert S, Aldamer ES et al (2018) Reduced sound-evoked and resting-state BOLD fMRI connectivity in tinnitus. Neuroimage Clin 20:637–649

    Article  Google Scholar 

  29. Husain FT (2016) Neural networks of tinnitus in humans: Elucidating severity and habituation. Hear Res 334:37–48

    Article  Google Scholar 

  30. Konkle DF, Beasley DS, Bess FH (1977) Intelligibility of time-altered speech in relation to chronological aging. J Speech Hear Res 20:108–115

    Article  CAS  Google Scholar 

  31. Kraus N, White-Schwoch T (2015) Unraveling the biology of auditory learning: a cognitive-sensorimotor-reward framework. Trends Cogn Sci (Regul Ed) 19:642–654

    Article  Google Scholar 

  32. Kujawa SG, Liberman MC (2009) Adding insult to injury: cochlear nerve degeneration after “temporary” noise-induced hearing loss. J Neurosci 29:14077–14085

    Article  CAS  Google Scholar 

  33. Leaver AM, Seydell-Greenwald A, Rauschecker JP (2016) Auditory-limbic interactions in chronic tinnitus: challenges for neuroimaging research. Hear Res 334:49–57

    Article  Google Scholar 

  34. Leaver AM, Turesky TK, Seydell-Greenwald A et al (2016) Intrinsic network activity in tinnitus investigated using functional MRI. Hum Brain Mapp 37:2717–2735

    Article  Google Scholar 

  35. Lin FR, Ferrucci L, An Y et al (2014) Association of hearing impairment with brain volume changes in older adults. Neuroimage 90:84–92

    Article  CAS  Google Scholar 

  36. Livingston G, Sommerlad A, Orgeta V et al (2017) Dementia prevention, intervention, and care. Lancet 390:2673–2734

    Article  Google Scholar 

  37. Matt L, Eckert P, Panford-Walsh R et al (2018) Visualizing BDNF transcript usage during sound-induced memory linked plasticity. Front Mol Neurosci 11:260

    Article  Google Scholar 

  38. Mazurek B, Szczepek AJ, Hebert S (2015) Stress and tinnitus. HNO 63:258–265

    Article  CAS  Google Scholar 

  39. Meddis R (2006) Auditory-nerve first-spike latency and auditory absolute threshold: a computer model. J Acoust Soc Am 119:406–417

    Article  Google Scholar 

  40. Melcher JR, Kiang NY (1996) Generators of the brainstem auditory evoked potential in cat. III: Identified cell populations. Hear Res 93:52–71

    Article  CAS  Google Scholar 

  41. Melcher JR, Levine RA, Bergevin C et al (2009) The auditory midbrain of people with tinnitus: abnormal sound-evoked activity revisited. Hear Res 257:63–74

    Article  Google Scholar 

  42. Micheyl C, Mcdermott JH, Oxenham AJ (2009) Sensory noise explains auditory frequency discrimination learning induced by training with identical stimuli. Atten Percept Psychophys 71:5–7

    Article  Google Scholar 

  43. Milloy V, Fournier P, Benoit D et al (2017) Auditory brainstem responses in tinnitus: a review of who, how, and what? Front Aging Neurosci 9:237

    Article  Google Scholar 

  44. Möhrle D, Hofmeier B, Amend M et al (2018) Enhanced central neural gain compensates acoustic trauma-induced cochlear impairment, but unlikely correlates with tinnitus and hyperacusis. Neuroscience. https://doi.org/10.1016/j.neuroscience.2018.12.038

    Article  PubMed  Google Scholar 

  45. Möhrle D, Ni K, Varakina K et al (2016) Loss of auditory sensitivity from inner hair cell synaptopathy can be centrally compensated in the young but not old brain. Neurobiol Aging 44:173–184

    Article  Google Scholar 

  46. Møller A, Jannetta P (1985) Neural generators of the auditory brainstem response. In: Jacobson JT (Hrsg) The auditory brainstem response. College Hill, San Diego

    Google Scholar 

  47. Montgomery N, Wehr M (2010) Auditory cortical neurons convey maximal stimulus-specific information at their best frequency. J Neurosci 30:13362–13366

    Article  CAS  Google Scholar 

  48. Moser T, Starr A (2016) Auditory neuropathy—neural and synaptic mechanisms. Nat Rev Neurol 12:135–149

    Article  CAS  Google Scholar 

  49. Müller M, Klinke R, Arnold W et al (2003) Auditory nerve fibre responses to salicylate revisited. Hear Res 183:37–43

    Article  Google Scholar 

  50. Ouda L, Profant O, Syka J (2015) Age-related changes in the central auditory system. Cell Tissue Res 361:337–358

    Article  Google Scholar 

  51. Paul BT, Bruce IC, Roberts LE (2018) Envelope following responses, noise exposure, and evidence of cochlear synaptopathy in humans: correction and comment. J Acoust Soc Am 143:EL487

    Article  Google Scholar 

  52. Ponton CW, Moore JK, Eggermont JJ (1996) Auditory brain stem response generation by parallel pathways: differential maturation of axonal conduction time and synaptic transmission. Ear Hear 17:402–410

    Article  CAS  Google Scholar 

  53. Roberts LE, Eggermont JJ, Caspary DM et al (2010) Ringing ears: the neuroscience of tinnitus. J Neurosci 30:14972–14979

    Article  CAS  Google Scholar 

  54. Rüttiger L, Singer W, Panford-Walsh R et al (2013) The reduced cochlear output and the failure to adapt the central auditory response causes tinnitus in noise exposed rats. PLoS ONE 8:e57247

    Article  Google Scholar 

  55. Sadaghiani S, Hesselmann G, Kleinschmidt A (2009) Distributed and antagonistic contributions of ongoing activity fluctuations to auditory stimulus detection. J Neurosci 29:13410–13417

    Article  CAS  Google Scholar 

  56. Schaette R, Kempter R (2012) Computational models of neurophysiological correlates of tinnitus. Front Syst Neurosci 6:34

    Article  Google Scholar 

  57. Schaette R, Mcalpine D (2011) Tinnitus with a normal audiogram: physiological evidence for hidden hearing loss and computational model. J Neurosci 31:13452–13457

    Article  CAS  Google Scholar 

  58. Schreiner CE, Langner G (1988) Periodicity coding in the inferior colliculus of the cat. II. Topographical organization. J Neurophysiol 60:1823–1840

    Article  CAS  Google Scholar 

  59. Sedley W, Friston KJ, Gander PE et al (2016) An integrative Tinnitus model based on sensory precision. Trends Neurosci 39:799–812

    Article  CAS  Google Scholar 

  60. Sergeyenko Y, Lall K, Liberman MC et al (2013) Age-related cochlear synaptopathy: an early-onset contributor to auditory functional decline. J Neurosci 33:13686–13694

    Article  CAS  Google Scholar 

  61. Shore SE, Roberts LE, Langguth B (2016) Maladaptive plasticity in tinnitus—triggers, mechanisms and treatment. Nat Rev Neurol 12:150–160

    Article  Google Scholar 

  62. Singer W, Kasini K, Manthey M et al (2018) The glucocorticoid antagonist mifepristone attenuates sound-induced long-term deficits in auditory nerve response and central auditory processing in female rats. Faseb J. https://doi.org/10.1096/fj.201701041RRR

    Article  PubMed  Google Scholar 

  63. Singer W, Zuccotti A, Jaumann M et al (2013) Noise-induced inner hair cell ribbon loss disturbs central arc mobilization: a novel molecular paradigm for understanding tinnitus. Mol Neurobiol 47:261–279

    Article  CAS  Google Scholar 

  64. Song JJ, De Ridder D, Weisz N et al (2014) Hyperacusis-associated pathological resting-state brain oscillations in the tinnitus brain: a hyperresponsiveness network with paradoxically inactive auditory cortex. Brain Struct Funct 219:1113–1128

    Article  Google Scholar 

  65. Turner JG, Brozoski TJ, Bauer CA et al (2006) Gap detection deficits in rats with tinnitus: a potential novel screening tool. Behav Neurosci 120:188–195

    Article  Google Scholar 

  66. Weinberger NM (2015) New perspectives on the auditory cortex: learning and memory. Handb Clin Neurol 129:117–147

    Article  Google Scholar 

  67. WHO (2012) Global estimates on prevalence of hearing loss

    Google Scholar 

  68. World Health Organisation (2004) www.euro.int.de. The global burden of disease. 2004 update. Geneva. Zugegriffen: 12. Dezember 2018

  69. Yang G, Lobarinas E, Zhang L et al (2007) Salicylate induced tinnitus: behavioral measures and neural activity in auditory cortex of awake rats. Hear Res 226:244–253

    Article  CAS  Google Scholar 

  70. Zeng FG (2013) An active loudness model suggesting tinnitus as increased central noise and hyperacusis as increased nonlinear gain. Hear Res 295:172–179

    Article  Google Scholar 

  71. Zenner HP, Delb W, Kroner-Herwig B et al (2017) A multidisciplinary systematic review of the treatment for chronic idiopathic tinnitus. Eur Arch Otorhinolaryngol 274:2079–2091

    Article  Google Scholar 

  72. Zenner HP, Vonthein R, Zenner B et al (2013) Standardized tinnitus-specific individual cognitive-behavioral therapy: a controlled outcome study with 286 tinnitus patients. Hear Res 298:117–125

    Article  Google Scholar 

Download references

Funding

Förderung

Die Arbeiten wurden über die Deutsche Forschungsgemeinschaft DFG-Kni-316-4-1, FOR 2060 project FE 438/5-1, KN316/12-1 and RU713/5‑1, KN316-13-1, SPP16-08 DFG und Hahn Stiftung (Index AG), Action on Hearing Loss (RNID Grant 54) unterstützt

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Knipper.

Ethics declarations

Interessenkonflikt

M. Knipper, B. Hofmeier, W. Singer, S. Wolpert, U. Klose und L. Rüttiger geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knipper, M., Hofmeier, B., Singer, W. et al. Differenzierung cochleärer Synaptopathien in verschiedene Hörstörungen. HNO 67, 406–416 (2019). https://doi.org/10.1007/s00106-019-0660-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00106-019-0660-4

Schlüsselwörter

Keywords

Navigation