, Volume 67, Supplement 2, pp 69–76 | Cite as

Scanning laser optical tomography in a neuropathic mouse model

Visualization of structural changes
  • J. SchulzeEmail author
  • L. Nolte
  • S. Lyutenski
  • N. Tinne
  • D. Heinemann
  • T. Ripken
  • M. A. Willaredt
  • H. G. Nothwang
  • T. Lenarz
  • A. Warnecke
Original articles



In the field of hearing research a variety of imaging techniques are available to study molecular and cellular structures of the cochlea. Most of them are based on decalcifying, embedding, and cutting of the cochlea. By means of scanning laser optical tomography (SLOT), the complete cochlea can be visualized without cutting. The Cav1.3−/− mice have already been extensively characterized and show structural changes in the inner ear. Therefore, they were used in this study as a model to investigate whether SLOT can detect structural differences in the murine cochlea.

Materials and methods

Whole undissected cochleae from Cav1.3−/− and wild-type mice of various postnatal stages were immunostained and analyzed by SLOT. The results were compared to cochlea preparations that were immunostained and analyzed by fluorescence microscopy. In addition, cochlea preparations were stained with osmium tetraoxide.


Visualization by SLOT showed that the staining of nerve fibers at P27 in Cav1.3−/− mice was almost absent compared to wild-type mice and earlier timepoints (P9). The analysis of cochlea preparations confirmed a reduction of the radial nerve fibers. In addition, a significantly reduced number of ribbon synapses per inner hair cell (IHC) at P20 and P27 in the apical part of the cochlea of Cav1.3−/− mice was detected.


The visualization of whole non-dissected cochleae by SLOT is a suitable tool for the analysis of gross phenotypic changes, as demonstrated by means of the Cav1.3−/− mouse model. For the analysis of finer structures of the cochlea, however, further methods must be used.


Spiral ganglion Cav1.3 calcium channel, mouse Synapses Neurofilaments Cochlea 

Scannende laseroptische Tomographie in einem neuropathischen Mausmodell

Visualisierung von strukturellen Veränderungen


Compliance with ethical guidelines

Conflict of interest

J. Schulze, L. Nolte, S. Lyutenski, N. Tinne, D. Heinemann, T. Ripken, M. A. Willaredt, H. G. Nothwang, T. Lenarz and A. Warnecke declare that they have no competing interests.

All experiments were carried out in accordance with the European communities Council Directive (2010/63/EU), the German Animal Protection law and approved by local animal care and use committee (LAVES, Oldenburg). All studies performed were in accordance with the ethical standards indicated in each case.

The supplement containing this article is not sponsored by industry.


  1. 1.
    Bellos C, Rigas G, Spiridon IF et al (2014) Reconstruction of cochlea based on micro-CT and histological images of the human inner ear. Biomed Res Int. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Beutner D, Moser T (2001) The presynaptic function of mouse cochlear inner hair cells during development of hearing. J Neurosci 21:4593–4599. CrossRefPubMedGoogle Scholar
  3. 3.
    Brandt A, Striessnig J, Moser T (2003) Ca V 1.3 channels are essential for development and presynaptic activity of cochlear inner hair cells. J Neurosci 23:10832–10840. CrossRefPubMedGoogle Scholar
  4. 4.
    Coleman B, Rickard NA, de Silva MG, Shepherd RK (2009) A protocol for cryoembedding the adult guinea pig cochlea for fluorescence immunohistology. J Neurosci Methods 176:144–151. CrossRefPubMedGoogle Scholar
  5. 5.
    Gillespie LN, Clark GM, Bartlett PF, Marzella PL (2003) BDNF-induced survival of auditory neurons in vivo: cessation of treatment leads to accelerated loss of survival effects. J Neurosci Res 71:785–790. CrossRefPubMedGoogle Scholar
  6. 6.
    Glueckert R, Wietzorrek G, Kammen-Jolly K et al (2003) Role of class D L‑type Ca2+ channels for cochlear morphology. Hear Res 178:95–105. CrossRefPubMedGoogle Scholar
  7. 7.
    Hardie NA, MacDonald G, Rubel EW (2004) A new method for imaging and 3D reconstruction of mammalian cochlea by fluorescent confocal microscopy. Brain Res 1000:200–210. CrossRefPubMedGoogle Scholar
  8. 8.
    Kellner M, Heidrich M, Beigel R et al (2012) Imaging of the mouse lung with scanning laser optical tomography (SLOT). J Appl Physiol 113:975–983. CrossRefPubMedGoogle Scholar
  9. 9.
    Kellner M, Heidrich M, Lorbeer R‑A et al (2016) A combined method for correlative 3D imaging of biological samples from macro to nano scale. Sci Rep 6:35606. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Kobel M, Le Prell CG, Liu J et al (2017) Noise-induced cochlear synaptopathy: past findings and future studies. Hear Res 349:148–154. CrossRefPubMedGoogle Scholar
  11. 11.
    Kremer JR, Mastronarde DN, McIntosh JR (1996) Computer visualization of three-dimensional image data using IMOD. J Struct Biol 116:71–76. CrossRefPubMedGoogle Scholar
  12. 12.
    Kujawa SG, Liberman MC (2009) Adding insult to injury: cochlear nerve degeneration after „temporary“ noise-induced hearing loss. J Neurosci 29:14077–14085. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Liberman LD, Liberman MC (2016) Postnatal maturation of auditory-nerve heterogeneity, as seen in spatial gradients of synapse morphology in the inner hair cell area. Hear Res 339:12–22. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    MacDonald GH, Rubel EW (2008) Three-dimensional imaging of the intact mouse cochlea by fluorescent laser scanning confocal microscopy. Hear Res 243:1–10. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Meyer AC, Frank T, Khimich D et al (2009) Tuning of synapse number, structure and function in the cochlea. Nat Neurosci 12:444–453. CrossRefPubMedGoogle Scholar
  16. 16.
    Nemzou NRM, Bulankina a V, Khimich D et al (2006) Synaptic organization in cochlear inner hair cells deficient for the CaV1.3 (alpha1D) subunit of L‑type Ca2+ channels. Neuroscience 141:1849–1860. CrossRefGoogle Scholar
  17. 17.
    Nolte L, Tinne N, Schulze J et al (2017) Scanning laser optical tomography for in toto imaging of the murine cochlea. PLoS ONE 12:e175431. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Oxenham AJ (2016) Predicting the perceptual consequences of hidden hearing loss. Trends Hear 20:233121651668676. CrossRefGoogle Scholar
  19. 19.
    Platzer J, Engel J, Schrott-Fischer A et al (2000) Congenital deafness and sinoatrial node dysfunction in mice lacking class D L‑type Ca2+ channels. Cell 102:89–97. CrossRefPubMedGoogle Scholar
  20. 20.
    Postnov A, Zarowski A, De Clerck N et al (2006) High resolution micro-CT scanning as an innovatory tool for evaluation of the surgical positioning of cochlear implant electrodes. Acta Otolaryngol 126:467–474. CrossRefPubMedGoogle Scholar
  21. 21.
    Poznyakovskiy AA, Zahnert T, Kalaidzidis Y et al (2008) The creation of geometric three-dimensional models of the inner ear based on micro computer tomography data. Hear Res 243:95–104. CrossRefPubMedGoogle Scholar
  22. 22.
    Scheper V, Paasche G, Miller JM et al (2009) Effects of delayed treatment with combined GDNF and continuous electrical stimulation on spiral ganglion cell survival in deafened guinea pigs. J Neurosci Res 87:1389–1399. CrossRefPubMedGoogle Scholar
  23. 23.
    Tinne N, Antonopoulos GC, Mohebbi S et al (2017) Three-dimensional hard and soft tissue imaging of the human cochlea by scanning laser optical tomography (SLOT). PLoS ONE 12:e184069. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Viana LM, O’Malley JT, Burgess BJ et al (2015) Cochlear neuropathy in human presbycusis: confocal analysis of hidden hearing loss in post-mortem tissue. Hear Res 327:78–88. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Whitlon DS, Szakaly R, Greiner MA (2001) Cryoembedding and sectioning of cochleas for immunocytochemistry and in situ hybridization. Brain Res Protoc 6:159–166. CrossRefGoogle Scholar
  26. 26.
    Wrzeszcz A, Reuter G, Nolte I et al (2013) Spiral ganglion neuron quantification in the guinea pig cochlea using Confocal Laser Scanning Microscopy compared to embedding methods. Hear Res 306:145–155. CrossRefPubMedGoogle Scholar
  27. 27.
    Yoo SK, Ge Wang G, Rubinstein JT, Vannier MW (2000) Three-dimensional geometric modeling of the cochlea using helico-spiral approximation. IEEE Trans Biomed Eng 47:1392–1402. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  • J. Schulze
    • 1
    • 4
    Email author
  • L. Nolte
    • 2
    • 4
  • S. Lyutenski
    • 1
  • N. Tinne
    • 2
    • 4
  • D. Heinemann
    • 2
    • 4
  • T. Ripken
    • 2
    • 4
  • M. A. Willaredt
    • 3
    • 4
  • H. G. Nothwang
    • 3
    • 4
  • T. Lenarz
    • 1
    • 4
  • A. Warnecke
    • 1
    • 4
  1. 1.Department of Otorhinolaryngology, Head and Neck Surgery, Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE)Hannover Medical SchoolHannoverGermany
  2. 2.Industrial and Biomedical Optics DepartmentLaser Zentrum Hannover e. V.HannoverGermany
  3. 3.NeurogeneticsCarl von Ossietzky University OldenburgOldenburgGermany
  4. 4.Cluster of Excellence “Hearing4all” EXC 1077/1Hannover/OldenburgGermany

Personalised recommendations