Skip to main content
Log in

„Hidden hearing loss“ – Schäden der Hörverarbeitung auch bei niederschwelliger Lärmbelastung?

Hidden hearing loss—damage to hearing processing even with low-threshold noise exposure?

  • Leitthema
  • Published:
HNO Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Neue Forschungen – im Tierversuch – belegen, dass durch geringere Lärmbelastungen und -pegel bereits Defekte der Synapsen der Hörbahn auftreten können. Zu direkten mechanischen Schädigungen der Haarzellen und damit zu messbaren (Audiogramm; Distorsionsprodukte otoakustischer Emissionen, DPOAE) Schäden des Innenohrs kommt es nur bei sehr hohen Lärmpegeln. Diese Arbeit bietet eine Kasuistik und Literaturübersicht.

Kasuistik

Ein 41-jähriger Patient erlitt bei einem Autounfall mit Auslösen der Airbags ein Lärmtrauma. Es resultierte ein rechtsbetonter Hörverlust mit Tinnitus. Der Hörverlust besserte sich teilweise, Tinnitus und v. a. Schwierigkeiten im Sprachverstehen persistierten. In der Audiometrie bestand initial ein typischer Hochtonhörverlust von 40 dB mit einem tonalen Tinnitus bei 8 kHz. Zwar waren 6 Monate nach dem Unfall DPOAE und BERA-Potenziale („brainstem evoked response audiometry“, Welle III und V) komplett normal, in der Elektrocochleographie ließ sich jedoch kein cochleäres Aktionspotenzial (CAP) nachweisen.

Diskussion

Trotz Erholung des initial bestehenden Hörverlusts mit Haarzellschaden blieb die synaptische Übertragung beeinträchtigt – mit geringem Hörverlust und schlechtem Sprachverstehen in komplexeren Schallsituationen. In der neuen Literatur wird dies als verdeckter Hörverlust („hidden hearing loss“) beschrieben. Während derartige retrocochleäre Schädigungen der Hörbahn im Tierversuch nachgewiesen wurden, fehlen bislang valide Aussagen dazu beim Menschen, auch weil bislang keine adäquate Diagnostik verfügbar ist.

Schlussfolgerung

Ein Lärmtrauma führt initial zu einem Haarzellschaden, nach Erholung können Beschwerden persistieren, die aus Schäden an den Synapsen des 1. Neurons resultieren können. Eine entsprechende Testbatterie muss entwickelt werden.

Abstract

Background

New research in animal models indicates that even at lower intensities, noise exposure can induce defects in the synapses of the auditory pathway. However, only very high levels of noise exposure lead to mechanical hair cell damage with lesions of the inner ear and measurable hearing loss (audiogram; distortion product otoacoustic emissions, DPOAE). This paper revises the literature, starting with a case study.

Case history

A 41-year-old patient suffered from hearing loss and tinnitus in the right ear following a car accident with airbag deployment. Hearing loss recovered partially, tinnitus and difficulties in speech discrimination persisted. Audiometry showed typical high-frequency hearing loss (40 dB) and tonal tinnitus (8 kHz). Although DPOAE and ABR potentials (auditory brainstem response, wave III and V) were completely normal 6 months after the accident, there was no detectable cochlear action potential (CAP) in electrocochleography (ECochG).

Discussion

These findings indicate recovery of initial hair cell damage, whereas synaptic transformation remains reduced and slight hearing loss and poor speech perception in complex listening situations persist. This phenomenon has been described as “hidden hearing loss” in newer literature. Although similar retrocochlear lesions in the auditory pathway could be detected in animal models, valid data in humans are currently lacking because no adequate diagnostic methods are available.

Conclusion

Noise trauma initially results in hair cell damage. After recovery, hearing loss may persist, which can be due to synaptic lesions in the first neuron. An adequate testbattery has to be developped.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Banglmaier RF, Rouhana SW (2003) Investigation into the noise associated with airbag deployment: part III—sound pressure level and auditory risk as a function of inflatable device. Annu Proc Assoc Adv Automot Med 47:25–50

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Basta D, Groschel M, Ernst A (2018) Central and peripheral aspects of noise-induced hearing loss. HNO 66:342–349

    Article  CAS  PubMed  Google Scholar 

  3. Bramhall NF, Konrad-Martin D, Mcmillan GP et al (2017) Auditory brainstem response altered in humans with noise exposure despite normal outer hair cell function. Ear Hear 38:e1–e12

    Article  PubMed  PubMed Central  Google Scholar 

  4. Browne C, Morley J, Parsons C (2012) Tracking the expression of excitatory and inhibitory neurotransmission-related proteins and neuroplasticity markers after noise induced hearing loss. PLoS ONE 7:e33272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Furman AC, Kujawa SG, Liberman MC (2013) Noise-induced cochlear neuropathy is selective for fibers with low spontaneous rates. J Neurophysiol 110(3):577–586

    Article  PubMed  PubMed Central  Google Scholar 

  6. Grinn SK, Wiseman KB, Baker JA et al (2017) Hidden hearing loss? No effect of common recreational noise exposure on cochlear nerve response amplitude in humans. Front Neurosci 11:465

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gröschel M, Ernst A, Basta D (2018) Lärminduzierte Neurodegeneration der zentralen Hörbahn. HNO 66:258–264

    Article  PubMed  Google Scholar 

  8. Grose JH, Buss E, Hall JW 3rd (2017) Loud music exposure and cochlear synaptopathy in young adults: isolated auditory brainstem response effects but no perceptual consequences. Trends Hear 21:2331216517737417

    PubMed  PubMed Central  Google Scholar 

  9. Hesse G (2016) Inner ear hearing loss. Laryngorhinootologie 95:383–391

    Article  CAS  PubMed  Google Scholar 

  10. Hesse G, Schaaf H (2012) Manual der Hörtherapie. Thieme, Stuttgart

    Book  Google Scholar 

  11. Hickman TT, Smalt C, Bobrow J et al (2018) Blast-induced cochlear synaptopathy in chinchillas. Sci Rep 8:10740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kobel M, Le Prell CG, Liu J et al (2017) Noise-induced cochlear synaptopathy: past findings and future studies. Hear Res 349:148–154

    Article  PubMed  Google Scholar 

  13. Kujawa S, Liberman M (2009) Adding insult to injury: cochlear nerve degeneration after „temporary“ noise-induced hearing loss. J Neurosci 29:14077–14087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lehnhardt E, Hesse G (2009) Zentrale Hördiagnostik. In: Lehnhardt E, Laszig R (Hrsg) Praxis der Audiometrie. Thieme, Stuttgart, S 188–193

    Google Scholar 

  15. Liberman MC (2016) Noise-induced hearing loss: permanent versus temporary threshold shifts and the effects of hair cell versus neuronal degeneration. Adv Exp Med Biol 875:1–7

    Article  PubMed  Google Scholar 

  16. Liberman MC, Epstein MJ, Cleveland SS et al (2016) Toward a differential diagnosis of hidden hearing loss in humans. PLoS ONE 11:1–15

    Article  Google Scholar 

  17. Liberman MC, Kujawa SG (2017) Cochlear synaptopathy in acquired sensorineural hearing loss: manifestations and mechanisms. Hear Res 349:138–147

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mori S, Fujieda S, Yamamoto T et al (2002) Psychogenic hearing loss with panic anxiety attack after the onset of acute inner ear disorder. ORL J Otorhinolaryngol Relat Spec 64:41–44

    Article  PubMed  Google Scholar 

  19. Mulders W, Robertson D (2009) Hyperactivity in the auditory midbrain after acoustic trauma: dependence on cochlear activity. Neuroscience 164(2):733–746

    Article  CAS  PubMed  Google Scholar 

  20. Oishi N, Kanzaki S, Kataoka C et al (2009) Acute-onset unilateral psychogenic hearing loss in adults: report of six cases and diagnostic pitfalls. ORL J Otorhinolaryngol Relat Spec 22:279–283

    Article  Google Scholar 

  21. Pienkowski M, Eggermont J (2012) Reversible long-term changes in auditory processing in mature auditory cortex in the absence of hearing loss induced by passive, moderate-level sound exposure. Ear Hear 33:305–314

    Article  PubMed  Google Scholar 

  22. Prendergast G, Millman RE, Guest H et al (2017) Effects of noise exposure on young adults with normal audiograms II: behavioral measures. Hear Res 356:74–86

    Article  PubMed  PubMed Central  Google Scholar 

  23. Robertson D, Bester C, Vogler D et al (2013) Spontaneous hyperacitvity in the auditory midbrain: relationship to afferent input. Hear Res 295:124–129

    Article  PubMed  Google Scholar 

  24. Saunders JE, Slattery WH 3rd, Luxford WM (1998) Automobile airbag impulse noise. Otolaryngol Head Neck Surg 118(2):228–234

    Article  CAS  PubMed  Google Scholar 

  25. Shi L, Chang Y, Li X et al (2016) Cochlear synaptopathy and noise-induced hidden hearing loss. Neural Plast 2016:6143164

    PubMed  PubMed Central  Google Scholar 

  26. Sturm JJ et al (2017) Noise trauma-induced behavioral gap detection deficits correlate with reorganization of excitatory and inhibitory local circuits in the inferior colliculus and are prevented by acoustic enrichment. J Neurosci 37(26):6314–6330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tepe V, Smalt C, Nelson J et al (2017) Hidden hearing injury: the emerging science and military relevance of cochlear synaptopathy. Mil Med 182:e1785–e1795

    Article  PubMed  Google Scholar 

  28. Valero MD, Burton JA, Hauser SN, Hackett TA, Ramachandran R, Liberman MC (2017) Noise-induced cochlear synaptopathy in rhesus monkeys (Macaca mulatta). Hear Res 353:213–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vlaski L, Dragicevic D, Dankuc D, Kljajic V, Lemajic-Komazec S, Komazec Z (2008) Psychogenic hearing impairment in differential diagnosis of sudden hearing loss. Med Pregl 61:31–35

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Hesse.

Ethics declarations

Interessenkonflikt

G. Hesse und G. Kastellis geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren. Für Bildmaterial oder anderweitige Angaben innerhalb des Manuskripts, über die Patienten zu identifizieren sind, liegt von ihnen und/oder ihren gesetzlichen Vertretern eine schriftliche Einwilligung vor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hesse, G., Kastellis, G. „Hidden hearing loss“ – Schäden der Hörverarbeitung auch bei niederschwelliger Lärmbelastung?. HNO 67, 417–424 (2019). https://doi.org/10.1007/s00106-019-0640-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00106-019-0640-8

Schlüsselwörter

Keywords

Navigation