Advertisement

HNO

pp 1–8 | Cite as

Influence of single-sided deafness on the auditory capacity of the better ear

  • S. ArndtEmail author
  • T. Wesarg
  • Y. Stelzig
  • R. Jacob
  • A. Illg
  • A. Lesinski-Schiedat
  • M. C. Ketterer
  • A. Aschendorff
  • I. Speck
Original articles

Abstract

Background

Patients with single-sided deafness (SSD) are limited by their asymmetric hearing in various areas of everyday life.

Objective

The aim of this investigation was to perform an age-correlated comparison of the hearing threshold of the better ear of SSD patients with a normal-hearing (NH) reference cohort. In addition, the potential influence of etiology, duration of deafness, and cochlear implantation (CI) of the poorer ear on the peripheral hearing ability of the better ear was investigated.

Materials and methods

In a multicenter study, the mean bone conduction hearing threshold of the better ear of 413 adult SSD patients was compared with that of an NH cohort drawn from ISO 7029:2017 for the frequencies 0.5, 1, 2, and 4 kHz.

Results

SSD patients showed significantly poorer hearing in the better ear compared to the age-correlated group of NH subjects. CI, duration of deafness, and etiology had no significant effect on the hearing ability of the better ear.

Conclusion

The origin of the poorer hearing of the better-hearing ear of SSD patients compared to an age-correlated NH cohort is still unclear. It is most likely a combination of different anatomical, immunological, etiological, and microcirculatory causes, which lead to poorer hearing of the better-hearing ear in SSD patients.

Keywords

Hearing tests Unilateral hearing loss Hearing disorders Auditory threshold Cochlear implant 

Einfluss einseitiger Taubheit auf das Hörvermögen des besseren Ohrs

Notes

Acknowledgements

We thank the Förderverein Taube Kinder lernen Hören e. V. Freiburg for the financial support of our research work. Special thanks also are due to Dr. E. Kludt, who compiled the retrospective data at the ENT Clinic of the Medizinischen Hochschule Hannover and to Dr. S. Schmidt at the Bundeswehrkrankenhaus Koblenz for her support in the revision of the manuscript.

Compliance with ethical guidelines

Conflict of interest

S. Arndt reports the following: Advanced Bionics: travel cost reimbursement, financial support for research; Cochlear: financial support for research, travel cost reimbursement; MED-EL: financial support for research, travel cost reimbursement; Oticon Medical: travel cost reimbursement. T. Wesarg reports the following: Advanced Bionics: financial support for research, travel cost reimbursement; Cochlear: financial support for research, travel cost reimbursement; MED-EL: financial support for research, travel cost reimbursement; Phonak Communications: financial support for research, travel cost reimbursement; Oticon Medical: travel cost reimbursement. A. Aschendorff reports the following: Advanced Bionics: financial support for research, Medical Advisory Board, travel cost reimbursement; Cochlear: financial support for research, travel cost reimbursement; MED-EL: financial support for research, travel cost reimbursement; Oticon Medical: financial support for research, travel cost reimbursement. Y. Stelzig, R. Jacob, A. Illg, A. Lesinski-Schiedat, M.C. Ketterer and I. Speck declare that they have no competing interests.

The present study was performed with approval of the Ethics Commission Freiburg (No. 381/18) for the Universitätsklinikum Freiburg and Bundeswehrkrankenhaus Koblenz and the Ethics Commission Hannover (No. 1897-2013) for the Medizinische Hochschule Hannover in compliance with national law and the Declaration of Helsinki of 2013 (in the current, revised edition) (DRKS00015740).

The supplement containing this article is not sponsored by industry.

References

  1. 1.
    Arndt S, Aschendorff A, Laszig R, Beck R, Schild C, Kroeger S, Ihorst G, Wesarg T (2011) Comparison of pseudobinaural hearing to real binaural hearing rehabilitation after cochlear implantation in patients with unilateral deafness and tinnitus. Otol Neurotol 32:39–47CrossRefGoogle Scholar
  2. 2.
    Arndt S, Laszig R, Aschendorff A, Hassepaß F, Wesarg T (2017) Cochlear implant treatment of patients with single-sided deafness or asymmetric hearing loss. HNO 65:98–108CrossRefGoogle Scholar
  3. 3.
    Feuerstein JF (1992) Monaural versus binaural hearing: Ease of listening, word recognition, and attentional effort. Ear Hear 13:80–86CrossRefGoogle Scholar
  4. 4.
    Hol M, Kunst S, Snik A, Bosman A, Mylanus E, Cremers C (2010) Bone-anchored hearing aids in patients with acquired and congenital unilateral inner ear deafness (Baha CROS): Clinical evaluation of 56 cases. Ann Otol Rhinol Laryngol 119:447–454CrossRefGoogle Scholar
  5. 5.
    Wie OB, Pripp AH, Tvete O (2010) Unilateral deafness in adults: Effects on communication and social interaction. Ann Otol Rhinol Laryngol 119:772–781PubMedGoogle Scholar
  6. 6.
    Buechner A, Brendel M, Lesinski-Schiedat A, Wenzel G, Frohne-Buechner C, Jaeger B, Lenarz T (2010) Cochlear implantation in unilateral deaf subjects associated with ipsilateral tinnitus. Otol Neurotol 31:1381–1385PubMedGoogle Scholar
  7. 7.
    Finke M, Bönitz H, Lyxell B, Illg A (2017) Cochlear implant effectiveness in postlingual single-sided deaf individuals: What’s the point? Int J Audiol 56(6):417–423CrossRefGoogle Scholar
  8. 8.
    Kitzes LM (1984) Some physiological consequences of neonatal cochlear destruction in the inferior colliculus of the gerbil, Meriones unguiculatus. Brain Res 306:171–178CrossRefGoogle Scholar
  9. 9.
    Reale RA, Brugge JF, Chan JC (1987) Maps of auditory cortex in cats reared after unilateral cochlear ablation in the neonatal period. Brain Res 431:281–290CrossRefGoogle Scholar
  10. 10.
    Scheffler K, Bilecen D, Schmid N, Tschopp K, Seelig J (1998) Auditory cortical responses in hearing subjects and unilateral deaf patients as detected by functional magnetic resonance imaging. Cereb Cortex 8:156–163CrossRefGoogle Scholar
  11. 11.
    Bilecen D, Seifritz E, Radü EW, Schmid N, Wetzel S, Probst R, Scheffler K (2000) Cortical reorganization after acute unilateral hearing loss traced by fMRI. Neurology 54:765–767CrossRefGoogle Scholar
  12. 12.
    Ponton CW, Vasama JP, Tremblay K, Khosla D, Kwong B, Don M (2001) Plasticity in the adult human central auditory system: Evidence from late-onset profound unilateral deafness. Hear Res 154:32–44CrossRefGoogle Scholar
  13. 13.
    Langers DRM, Van Dijk P, Backes WH (2005) Lateralization, connectivity and plasticity in the human central auditory system. Neuroimage 28:490–499CrossRefGoogle Scholar
  14. 14.
    Lim HW, Lee JW, Chung JW (2014) Vulnerability to acoustic trauma in the normal hearing ear with contralateral hearing loss. Ann Otol Rhinol Laryngol 123(4):286–292CrossRefGoogle Scholar
  15. 15.
    Rajan R (2001) Unilateral hearing losses alter loud sound-induced temporary threshold shifts and efferent effects in the normal-hearing ear. J Neurophysiol 85:1257–1269CrossRefGoogle Scholar
  16. 16.
    Güttich A (1927) Zur pathologischen Anatomie der sympathischen Labyrinthitis. Passow-Schaefer-Beitr Anat Physiol Pathol Ther Ohres 27:6–9Google Scholar
  17. 17.
    Dutta Majumder P, Anthony E, George AE, Ganesh SK, Biswas J (2017) Postsurgical sympathetic ophthalmia: Retrospective analysis of a rare entity. Int Ophthalmol 38(6):2487–2493CrossRefGoogle Scholar
  18. 18.
    Van de Heyning P, Távora-Vieira D, Mertens G et al (2016) Towards a unified testing framework for single-sided deafness studies: A consensus paper. Audiol Neurootol 21(6):391–398CrossRefGoogle Scholar
  19. 19.
    ISO 7029:2017: International Organization of Standardization: Acoustics—Threshold of Hearing by Air Conduction as a Function of Age and Sex for Otologically Normal Persons. Geneva, International Organization of StandardizationGoogle Scholar
  20. 20.
    R Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  21. 21.
    Alhanbali S, Dawes P, Lloyd S, Munro KJ (2017) Self-reported listening-related effort and fatigue in hearing-impaired adults. Ear Hear 38(1):e39–e48CrossRefGoogle Scholar
  22. 22.
    Nelson EG, Hinojosa R (2006) Presbycusis: A human temporal bone study of individuals with downward sloping audiometric patterns of hearing loss and review of the literature. Laryngoscope 116(9):1–12CrossRefGoogle Scholar
  23. 23.
    Schuknecht HF, Gacek MR (1993) Cochlear pathology in presbycusis. Ann Otol Rhinol Laryngol 102(1):1–16CrossRefGoogle Scholar
  24. 24.
    ten Cate WJ, Bachor E (2005) Autoimmune-mediated sympathetic hearing loss: A case report. Otol Neurotol 26:161–165CrossRefGoogle Scholar
  25. 25.
    Bachor E, ten Cate WJ, Gloddek B, Ehsani N (2000) Immunhistochemischer Nachweis von humoralen Auto-Antikörpern bei Patienten mit einer Hörminderung auf dem letzthörenden Ohr. Laryngorhinootologie 79:131–134CrossRefGoogle Scholar
  26. 26.
    Feldmann H (1987) Spätfolgen nach laterobasalen Frakturen, therapeutische und gutachtliche Gesichtspunkte. Laryngol Rhinol Otol (Stuttg) 66:91–98CrossRefGoogle Scholar
  27. 27.
    McCabe BF (1979) Autoimmune sensorineural hearing loss. Ann Otol Rhinol Laryngol 88:585–589CrossRefGoogle Scholar
  28. 28.
    Hueb MM, Goycoolea MV, Paparella MM, Oliveira JA (1991) Otosclerosis: The University of Minnesota temporal bone collection. Otolaryngol Head Neck Surg 105:396–405CrossRefGoogle Scholar
  29. 29.
    Perez R, Chen JM, Nedzelski JM (2004) The status of the contralateral ear in established unilateral Menière’s disease. Laryngoscope 114:1373–1376CrossRefGoogle Scholar
  30. 30.
    Archibald HD, Ascha M, Gupta A, Megerian C, Otteson T (2019) Hearing loss in unilateral and bilateral enlarged vestibular aqueduct syndrome. Int J Pediatr Otorhinolaryngol 118:147–151CrossRefGoogle Scholar
  31. 31.
    Marcus S, Whitlow CT, Koonce J, Zapadka ME, Chen MY, Williams DW 3rd, Lewis M, Evans AK (2014) Computed tomography demonstrates abnormalities of contralateral ear in subjects with unilateral sensorineural hearing loss. Int J Pediatr Otorhinolaryngol 78(2):268–271CrossRefGoogle Scholar
  32. 32.
    Ukaegbe O, Ezeanolue B, Orji F (2016) The influence of tinnitus on the audiometric threshold of sufferers. Int Arch Otorhinolaryngol 20:339–343CrossRefGoogle Scholar
  33. 33.
    Mertens G, Kleine Punte A, De Ridder D, Van de Heyning P (2013) Tinnitus in a single-sided deaf ear reduces speech reception in the nontinnitus ear. Otol Neurotol 34(4):662–666CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  • S. Arndt
    • 1
    Email author
  • T. Wesarg
    • 1
  • Y. Stelzig
    • 2
  • R. Jacob
    • 2
  • A. Illg
    • 3
  • A. Lesinski-Schiedat
    • 3
  • M. C. Ketterer
    • 1
  • A. Aschendorff
    • 1
  • I. Speck
    • 1
  1. 1.Department of Otorhinolaryngology—Head and Neck Surgery, Medical Center, Faculty of MedicineUniversity of FreiburgFreiburgGermany
  2. 2.Department of Oto-Rhino-LaryngologyCentral Army Hospital KoblenzKoblenzGermany
  3. 3.Dept. of OtorhinolaryngologyMedical University HannoverHannoverGermany

Personalised recommendations