Skip to main content
Log in

Neural plasticity and its initiating conditions in tinnitus

Neuronale Plastizität und ihre auslösenden Bedingungen bei Tinnitus

  • Leitthema
  • Published:
HNO Aims and scope Submit manuscript

Abstract

Background and objective

Deafferentation caused by cochlear pathology (which can be hidden from the audiogram) activates forms of neural plasticity in auditory pathways, generating tinnitus and its associated conditions including hyperacusis. This article discusses tinnitus mechanisms and suggests how these mechanisms may relate to those involved in normal auditory information processing.

Materials and methods

Research findings from animal models of tinnitus and from electromagnetic imaging of tinnitus patients are reviewed which pertain to the role of deafferentation and neural plasticity in tinnitus and hyperacusis.

Results

Auditory neurons compensate for deafferentation by increasing their input/output functions (gain) at multiple levels of the auditory system. Forms of homeostatic plasticity are believed to be responsible for this neural change, which increases the spontaneous and driven activity of neurons in central auditory structures in animals expressing behavioral evidence of tinnitus. Another tinnitus correlate, increased neural synchrony among the affected neurons, is forged by spike-timing-dependent neural plasticity in auditory pathways. Slow oscillations generated by bursting thalamic neurons verified in tinnitus animals appear to modulate neural plasticity in the cortex, integrating tinnitus neural activity with information in brain regions supporting memory, emotion, and consciousness which exhibit increased metabolic activity in tinnitus patients.

Discussion and conclusion

The latter process may be induced by transient auditory events in normal processing but it persists in tinnitus, driven by phantom signals from the auditory pathway. Several tinnitus therapies attempt to suppress tinnitus through plasticity, but repeated sessions will likely be needed to prevent tinnitus activity from returning owing to deafferentation as its initiating condition.

Zusammenfassung

Hintergrund und Ziel

Über eine Deafferenzierung durch pathologische Veränderungen der Cochlea (die sich im Audiogramm nicht zeigen muss) werden Formen der neuronalen Plastizität in auditorischen Signalwegen aktiviert, die Tinnitus und damit einhergehende Erkrankungen einschließlich Hyperakusis verursachen. In dem vorliegenden Beitrag werden Tinnitusmechanismen erörtert und Konzepte vorgestellt, wie diese Mechanismen mit denen normaler auditorischer Informationsverarbeitung in Zusammenhang stehen können.

Material und Methoden

Dargelegt werden Forschungsergebnisse aus Tiermodellen des Tinnitus und von elektromagnetischen Untersuchungen mit Bildgebung an Tinnituspatienten, die die Bedeutung der Deafferenzierung und der neuronalen Plastizität bei Tinnitus und Hyperakusis unterstreichen.

Ergebnisse

Auditorische Neuronen kompensieren eine Deafferenzierung durch Erhöhung ihrer Eingangs-Ausgangs-Funktionen (Verstärkung, „gain“) auf mehreren Ebenen des auditorischen Systems. Formen der homöostatischen Plastizität sollen für diese neuronalen Veränderungen verantwortlich sein, so dass die spontane und gesteuerte Aktivität von Neuronen in zentralen auditorischen Strukturen bei solchen Tieren erhöht wird, deren Verhalten Hinweise auf das Vorliegen eines Tinnitus gibt. Ein weiteres Tinnituskorrelat ist die erhöhte neuronale Synchronizität unter den betroffenen Neuronen. Diese entsteht durch Erregungszeitmuster-(„spike-timing“)abhängige neuronale Plastizität in den auditorischen Signalwegen, d. h. die Verstärkung einer synaptischen Verbindung erfolgt in Abhängigkeit von der relativen zeitlichen Differenz der Erregung von Neuronen zueinander. Langsame Oszillationen, die durch wiederholte Aktionspotenziale („bursts“) thalamischer Neuronen erzeugt werden und die bei Tieren mit Tinnitus in Zusammenhang gebracht wurden, scheinen die neuronale Plastizität im Kortex zu modulieren. Dabei wird die neuronale Tinnitusaktivität mit Informationen aus Hirnarealen verflochten, die Gedächtnis, Gefühle und Bewusstsein unterstützen und bei Tinnituspatienten eine erhöhte metabolische Aktivität aufweisen.

Diskussion und Schlussfolgerung

Letzterer Vorgang könnte durch transiente auditorische Ereignisse auch in der normalen Hörverarbeitung induziert werden, angeregt durch Phantomsignale aus der Hörbahn jedoch bei Tinnitus persistierend. Bei verschiedenen Ansätzen zur Tinnitustherapie wird versucht, den Tinnitus über Anregungen von Plastizitätsveränderungen zu supprimieren. Aber es erscheinen wahrscheinlich wiederholte Behandlungseinheiten notwendig, um zu verhindern, dass die durch Deafferenzierung ausgelöste Tinnitusaktivität wiederkehrt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

A1:

Primary auditory cortex

A2:

Nonprimary auditory cortex

ABR:

Auditory brainstem response

AM:

Amplitude modulation

ANF:

Auditory nerve fiber

CN:

Cochlear nucleus

DCN:

Dorsal cochlear nucleus

EEG:

Electroencephalography

EFR:

Envelope following response

HSR:

High spontaneous rate (ANFs)

IC:

Inferior colliculus

HL:

Hearing level

HP:

Homeostatic plasticity

HT:

High threshold (ANFs)

IHC:

Inner hair cell

LT:

Low threshold (ANFs)

OHC:

Outer hair cell

PTS:

Permanent threshold shift

SFR:

Spontaneous firing rate

SPL:

Sound pressure level

STDP:

Spike-timing-dependent plasticity

TTS:

Temporary threshold shift

References

  1. Auerbach BD, Rodrigues PV, Salvi RJ (2014) Central gain control in tinnitus and hyperacusis. Front Neurol 5:206. https://doi.org/10.3389/fneur.2014.00206

    Article  PubMed  PubMed Central  Google Scholar 

  2. Carracedo LM, Kjeldsen H, Cunnington L, Jenkins A, Schofield I, Whittington MA et al (2013) A neocortical delta rhythm facilitates reciprocal interlaminar interactions via nested theta rhythms. J Neurosci 33:10750–10761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dehmel S, Pradhan S, Koehler S, Bledsoe S, Shore S (2012) Noise overexposure alters long-term somatosensory-auditory processing in the dorsal cochlear nucleus—possible basis for tinnitus-related hyperactivity? J Neurosci 32:1660–1671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Eggermont JJ, Roberts LE (2015) Tinnitus: animal models and findings in humans. Cell Tissue Res 361:311–336

    Article  PubMed  Google Scholar 

  5. Gu JW, Herrmann BS, Levine RA, Melcher JR (2012) Brainstem auditory evoked potentials suggest a role for the ventral cochlear nucleus in tinnitus. J Assoc Res Otolaryngol 13:819–833

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hébert S, Fournier P, Noreña A (2013) The auditory sensitivity is increased in tinnitus ears. J Neurosci 33:2356–2364

    Article  PubMed  Google Scholar 

  7. Husain FT, Schmidt SA (2014) Using resting state functional connectivity to unravel networks of tinnitus. Hear Res 307:153–162

    Article  PubMed  Google Scholar 

  8. Koehler SD, Shore SE (2013) Stimulus timing-dependent plasticity in dorsal cochlear nucleus is altered in tinnitus. J Neurosci 33:19647–19656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kujawa SG, Liberman MC (2009) Adding insult to injury: cochlear nerve degeneration after “temporary” noise-induced hearing loss. J Neurosci 29:14077–14085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li S, Choi V, Tzounopoulos T (2013) Pathogenic plasticity of Kv7. 2/3 channel activity is essential for the induction of tinnitus. Proc Natl Acad Sci USA 110:9980–9985. https://doi.org/10.1073/pnas.1216671110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Noreña AJ, Chery-Croze S (2007) Enriched acoustic environment rescales auditory sensitivity. Neuroreport 18:1251–1255

    Article  PubMed  Google Scholar 

  12. Paul BT, Bruce IC, Roberts LE (2017) Evidence that hidden hearing loss underlies amplitude modulation encoding deficits in individuals with and without tinnitus. Hear Res 344:170–182

    Article  PubMed  Google Scholar 

  13. Pozo K, Goda Y (2010) Unraveling mechanisms of homeostatic synaptic plasticity. Neuron 66:337–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Qiu C, Salvi R, Ding D, Burkard R (2000) Inner hair cell loss leads to enhanced response amplitudes in auditory cortex of unanesthetized chinchillas: Evidence for increased system gain. Hear Res 139:153–171

    Article  CAS  PubMed  Google Scholar 

  15. Reed GF (1960) An audiological study of two hundred cases of subjective tinnitus. Arch Otolaryngol 71:94–104

    Article  Google Scholar 

  16. Roberts LE, Bosnyak DJ, Bruce IC, Gander PE, Paul BT (2015) Evidence for differential modulation of primary and nonprimary auditory cortex by forward masking in tinnitus. Hear Res 327:9–27

    Article  PubMed  Google Scholar 

  17. Sametsky EA, Turner JG, Larsen D, Ling L, Caspary DM (2015) Enhanced GABA A -mediated tonic Inhibition in auditory thalamus of rats with behavioral evidence of tinnitus. J Neurosci 35:9369–9380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schaette R, McAlpine D (2011) Tinnitus with a normal audiogram: physiological evidence for hidden hearing loss and computational model. J Neurosci 31:13452–13457

    Article  CAS  PubMed  Google Scholar 

  19. Sedley W, Gander PE, Kumar S, Oya H, Kovach CK, Nourski KV, Griffiths TD et al (2015) Intracranial mapping of a cortical tinnitus system using residual inhibition. Curr Biol 25:1208–1214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shaheen LA, Valero MD, Liberman MC (2015) Towards a diagnosis of cochlear neuropathy with envelope following responses. J Assoc Res Otolaryngol 16:727–745

    Article  PubMed  PubMed Central  Google Scholar 

  21. Shore SE, Roberts LE, Langguth B (2016) Maladaptive plasticity in tinnitus—triggers, mechanisms and treatment. Nat Rev Neurol 12:150–160

    Article  PubMed  PubMed Central  Google Scholar 

  22. Stefanescu RA, Shore SE (2017) Muscarinic acetylcholine receptors control baseline activity and Hebbian stimulus timing-dependent plasticity in fusiform cells of the dorsal cochlear nucleus. J Neurophysiol 117:1229–1238

    Article  PubMed  Google Scholar 

  23. Wang H, Brozoski TJ, Turner JG, Ling L, Parrish JL, Hughes LF, Caspary DM (2009) Plasticity at glycinergic synapses in dorsal cochlear nucleus of rats with behavioral evidence of tinnitus. Neuroscience 164:747–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wu C, Martel DT, Shore SE (2016) Increased synchrony and bursting of dorsal cochlear nucleus fusiform cells correlate with tinnitus. J Neurosci 36:2068–2073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Marks KL, Martel DT, Wu C, Basura GJ, Roberts LE, Schvartz-Leyzac KC, Shore SE (2017) Auditory-somatosensory stimulation desynchronizes brain circuitry to reduce tinnitus in guinea pigs and humans. Sci Transl Med. (in press)

Download references

Acknowledgements

This article derives from an invited presentation to the 18th Annual Tinnitus Symposium, Charité University Hospital Berlin, on 3 December 2016. The author acknowledges the support of the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. E. Roberts.

Ethics declarations

Conflict of interest

L.E. Roberts declares that he has no competing interests.

The research studies reviewed in this article were approved by the ethics committees of the host institutions in accordance with accepted practices and the Declaration of Helsinki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roberts, L.E. Neural plasticity and its initiating conditions in tinnitus. HNO 66, 172–178 (2018). https://doi.org/10.1007/s00106-017-0449-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00106-017-0449-2

Keywords

Schlüsselwörter

Navigation