Neurofeedback in der Behandlung des chronischen Tinnitus

Überblick und Ausblick

Neurofeedback for the treatment of chronic tinnitus

Review and future perspectives

Zusammenfassung

Neurofeedback ist ein Therapieverfahren unter Einsatz der Elektroenzephalographie (EEG), dessen Ziel es ist, eine Selbstkontrolle der eigenen Gehirnaktivität zu erlangen bzw. die eigene Gehirnaktivität gezielt zu beeinflussen. Diese Technik ist nachgewiesenermaßen geeignet, bestimmte Beschwerden wie Aufmerksamkeitsprobleme, Hyperaktivität, Depression oder Migräne zu verbessern. Auch zur Behandlung von Tinnitus ist dieses Verfahren in den letzten Jahren wiederholt in Studien mit dem Erfolg einer Besserung der Tinnitussymptomatik eingesetzt worden, hat sich allerdings nicht als routinemäßig verwendetes Therapieverfahren durchgesetzt. Diese Übersicht beschreibt die Rationale des Einsatzes von Neurofeedback bei Tinnitus und die bisher vorliegende Datenlage gemäß den publizierten Studien. Hierbei wird auch die alternative Methode des Neurofeedbacks, vermittelt durch Echtzeitmessungen in der funktionellen Magnetresonanztomographie („real time fMRT“), berücksichtigt. Zukünftige Möglichkeiten werden aufgezeigt, wie – orientierend an den zunehmenden Erkenntnissen über die Pathophysiologie des Tinnitus und an den verfeinerten EEG-Analysetechniken (Quellenschätzung, Konnektivität) – neuartige Neurofeedbackprotokolle zu einer nachhaltigeren Kontrolle von Tinnitusbeschwerden beitragen könnten.

Abstract

Neurofeedback is a noninvasive neuromodulation technique employing real-time display of brain activity in terms of electroencephalography (EEG) signals to teach self-regulation of distinct patterns of brain activity or influence brain activity in a targeted manner. The benefit of this approach for control of symptoms in attention deficit disorders, hyperactivity, depression, and migraine has been proven. Studies in recent years have also repeatedly shown this treatment to improve tinnitus symptoms, although it has not become established as routine therapy. The primary focus of this review is the rational of EEG neurofeedback for tinnitus treatment and the currently available data from published studies. Furthermore, alternative neurofeedback protocols using real-time functional magnetic resonance imaging (fMRI) measurements for tinnitus control are considered. Finally, this article highlights how modern EEG analysis (source localization, connectivity) and the improving understanding of tinnitus pathology can contribute to development of more focused neurofeedback protocols for more sustainable control of tinnitus.

This is a preview of subscription content, access via your institution.

Abb. 1
Abb. 2

Literatur

  1. 1.

    Eggermont JJ, Roberts LE (2004) The neuroscience of tinnitus. Trends Neurosci 27:676–682

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Langguth B, Kleinjung T, Fischer B, Hajak G, Eichhammer P, Sand PG (2007) Tinnitus severity, depression and the big five personality traits. In: Langguth B, Hajak G, Kleinjung T, Cacace A, Møller AR (Hrsg) Tinnitus: pathophysiology and treatment, progress in brain research. Elsevier, Amsterdam, S 221–233

    Google Scholar 

  3. 3.

    Langguth B, Landgrebe M, Kleinjung T, Sand GP, Hajak G (2011) Tinnitus and depression. World J Biol Psychiatry 12:489–500

    Article  PubMed  Google Scholar 

  4. 4.

    Zenner HP, Delb W, Kroner-Herwig B, Jager B, Peroz I, Hesse G, Mazurek B, Goebel G, Gerloff C, Trollmann R, Biesinger E, Seidler H, Langguth B (2017) A multidisciplinary systematic review of the treatment for chronic idiopathic tinnitus. Eur Arch Otorhinolaryngol 274:2079–2091

    Article  PubMed  Google Scholar 

  5. 5.

    Elgoyhen AB, Langguth B, De Ridder D, Vanneste S (2015) Tinnitus: perspectives from human neuroimaging. Nat Rev Neurosci 16:632–642

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Brozoski TJ, Bauer CA (2016) Animal models of tinnitus. Hear Res 338:88–97

    Article  PubMed  Google Scholar 

  7. 7.

    Eggermont JJ (2015) The auditory cortex and tinnitus – a review of animal and human studies. Eur J Neurosci 41:665–676

    Article  PubMed  Google Scholar 

  8. 8.

    Eggermont JJ (2015) Neural substrates of tinnitus in animal and human cortex : cortical correlates of tinnitus. HNO 63:298–301

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Jastreboff PJ (1990) Phantom auditory perception (tinnitus): mechanisms of generation and perception. Neurosci Res 8:221–254

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Llinas RR, Ribary U, Jeanmonod D, Kronberg E, Mitra PP (1999) Thalamocortical dysrhythmia: a neurological and neuropsychiatric syndrome characterized by magnetoencephalography. Proc Natl Acad Sci 96:15222–15227

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Knipper M, Van Dijk P, Nunes I, Ruttiger L, Zimmermann U (2013) Advances in the neurobiology of hearing disorders: recent developments regarding the basis of tinnitus and hyperacusis. Prog Neurobiol 111:17–33

    Article  PubMed  Google Scholar 

  12. 12.

    Schaette R, McAlpine D (2011) Tinnitus with a normal audiogram: physiological evidence for hidden hearing loss and computational model. J Neurosci 31:13452–13457

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Schecklmann M, Vielsmeier V, Steffens T, Landgrebe M, Langguth B, Kleinjung T (2012) Relationship between audiometric slope and tinnitus pitch in tinnitus patients: insights into the mechanisms of tinnitus generation. PLOS ONE 7:e34878

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Rauschecker JP, Leaver AM, Muhlau M (2010) Tuning out the noise: limbic-auditory interactions in tinnitus. Neuron 66:819–826

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    De Ridder D, Elgoyhen AB, Romo R, Langguth B (2011) Phantom percepts: tinnitus and pain as persisting aversive memory networks. Proc Natl Acad Sci U S A 108:8075–8080

    Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    De Ridder D, Vanneste S, Weisz N, Londero A, Schlee W, Elgoyhen AB, Langguth B (2013) An integrative model of auditory phantom perception: Tinnitus as a unified percept of interacting separable subnetworks. Neurosci Biobehav Rev 44:16–32. https://doi.org/10.1016/j.neubiorev.2013.03.021

    Article  PubMed  Google Scholar 

  17. 17.

    Kleinjung T, Steffens T, Strutz J, Eichhammer P, Hajak G, Langguth B (2006) Transcranial magnetic stimulation for the treatment of tinnitus. HNO 54:665–666

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    De Ridder D, Vanneste S, Kovacs S, Sunaert S, Menovsky T, van de Heyning P, Moller A (2011) Transcranial magnetic stimulation and extradural electrodes implanted on secondary auditory cortex for tinnitus suppression. J Neurosurg 114:903–911

    Article  PubMed  Google Scholar 

  19. 19.

    Shekhawat GS, Stinear CM, Searchfield GD (2015) Modulation of perception or emotion? A scoping review of tinnitus neuromodulation using transcranial direct current stimulation. Neurorehabil Neural Repair 29:837–846

    Article  PubMed  Google Scholar 

  20. 20.

    Smit JV, Janssen ML, Schulze H, Jahanshahi A, Van Overbeeke JJ, Temel Y, Stokroos RJ (2015) Deep brain stimulation in tinnitus: current and future perspectives. Brain Res 1608:51–65

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Hedrich T, Pellegrino G, Kobayashi E, Lina JM, Grova C (2017) Comparison of the spatial resolution of source imaging techniques in high-density EEG and MEG. Neuroimage 157:531–544

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Adjamian P (2014) The application of electro- and magneto-encephalography in tinnitus research – methods and interpretations. Front Neurol 5:228. https://doi.org/10.3389/fneur.2014.00228

    Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Pascual-Marqui RD, Esslen M, Kochi K, Lehmann D (2002) Functional imaging with low-resolution brain electromagnetic tomography (LORETA): a review. Methods Find Exp Clin Pharmacol 24(Suppl C):91–95

    PubMed  Google Scholar 

  24. 24.

    van der Loo E, Gais S, Congedo M, Vanneste S, Plazier M, Menovsky T, Van de Heyning P, De Ridder D (2009) Tinnitus intensity dependent gamma oscillations of the contralateral auditory cortex. PLOS ONE 4:e7396

    Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Meyer M, Luethi MS, Neff P, Langer N, Buchi S (2014) Disentangling tinnitus distress and tinnitus presence by means of EEG power analysis. Neural Plast. https://doi.org/10.1155/2014/468546

    Google Scholar 

  26. 26.

    Meyer M, Neff P, Grest A, Hemsley C, Weidt S, Kleinjung T (2017) EEG oscillatory power dissociates between distress- and depression-related psychopathology in subjective tinnitus. Brain Res 1663:194–204

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Weisz N, Dohrmann K, Elbert T (2007) The relevance of spontaneous activity for the coding of the tinnitus sensation. Tinnitus Pathophysiol Treat 166:61–70

    Article  Google Scholar 

  28. 28.

    Ashton H, Reid K, Marsh R, Johnson I, Alter K, Griffiths T (2007) High frequency localised „hot spots“ in temporal lobes of patients with intractable tinnitus: a quantitative electroencephalographic (QEEG) study. Neurosci Lett 426:23–28

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Moazami-Goudarzi M, Michels L, Weisz N, Jeanmonod D (2010) Temporo-insular enhancement of EEG low and high frequencies in patients with chronic tinnitus. QEEG study of chronic tinnitus patients. BMC Neurosci 11:40

    Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Gosepath K, Nafe B, Ziegler E, Mann WJ (2001) Neurofeedback in therapy of tinnitus. HNO 49:29–35

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Schenk S, Lamm K, Gundel H, Ladwig KH (2005) Neurofeedback-based EEG alpha and EEG beta training. Effectiveness in patients with chronically decompensated tinnitus. HNO 53:29–37

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Dohrmann K, Elbert T, Schlee W, Weisz N (2007) Tuning the tinnitus percept by modification of synchronous brain activity. Restor Neurol Neurosci 25:371–378

    PubMed  Google Scholar 

  33. 33.

    Dohrmann K, Weisz N, Schlee W, Hartmann T, Elbert T (2007) Neurofeedback for treating tinnitus. Prog Brain Res 166:473–485

    Article  PubMed  Google Scholar 

  34. 34.

    Crocetti A, Forti S, Del Bo L (2011) Neurofeedback for subjective tinnitus patients. Auris Nasus Larynx 38:735–738

    Article  PubMed  Google Scholar 

  35. 35.

    Hartmann T, Lorenz I, Muller N, Langguth B, Weisz N (2014) The effects of neurofeedback on oscillatory processes related to tinnitus. Brain Topogr 27:149–157

    Article  PubMed  Google Scholar 

  36. 36.

    Emmert K, Kopel R, Koush Y, Maire R, Senn P, Van De Ville D, Haller S (2017) Continuous vs. intermittent neurofeedback to regulate auditory cortex activity of tinnitus patients using real-time fMRI – A pilot study. Neuroimage Clin 14:97–104

    Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Weiler EWJ, Brill K, Tachiki KH, Schneider D (2002) Neurofeedback and Quantitative Electroencephalography. Int Tinnitus J 7:33–39

    Google Scholar 

  38. 38.

    Haller S, Birbaumer N, Veit R (2010) Real-time fMRI feedback training may improve chronic tinnitus. Eur Radiol 20:696–703

    Article  PubMed  Google Scholar 

  39. 39.

    Busse M, Low YF, Corona-Strauss FI, Delb W, Strauss DJ (2008) Neurofeedback by neural correlates of auditory selective attention as possible application for tinnitus therapies. Conf Proc IEEE Eng Med Biol Soc 2008:5136–5139

    PubMed  Google Scholar 

  40. 40.

    Lehner A, Schecklmann M, Greenlee MW, Rupprecht R, Langguth B (2016) Triple-site rTMS for the treatment of chronic tinnitus: a randomized controlled trial. Sci Rep 6:22302

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Maurizio S, Liechti MD, Heinrich H, Jancke L, Steinhausen HC, Walitza S, Brandeis D, Drechsler R (2014) Comparing tomographic EEG neurofeedback and EMG biofeedback in children with attention-deficit/hyperactivity disorder. Biol Psychol 95:31–44

    Article  PubMed  Google Scholar 

  42. 42.

    Vanneste S, Joos K, Ost J, De Ridder D (2016) Influencing connectivity and cross-frequency coupling by real-time source localized neurofeedback of the posterior cingulate cortex reduces tinnitus related distress. Neurobiol Stress. https://doi.org/10.1016/j.ynstr.2016.11.003

    Google Scholar 

Download references

Danksagung

Die Autoren danken Herrn Dr. med. David Bächinger herzlich für die Erstellung der zweiten Abbildung.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Prof. Dr. med. T. Kleinjung.

Ethics declarations

Interessenkonflikt

T. Kleinjung, C. Thüring, D. Güntensperger, P. Neff und M. Meyer geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kleinjung, T., Thüring, C., Güntensperger, D. et al. Neurofeedback in der Behandlung des chronischen Tinnitus. HNO 66, 198–204 (2018). https://doi.org/10.1007/s00106-017-0432-y

Download citation

Schlüsselwörter

  • Hörstörungen
  • Neurofeedback
  • Elektroenzephalographie
  • Neuromodulation
  • Quellenschätzung

Keywords

  • Hearing disorders
  • Neurofeedback
  • Electroencephalography
  • Neuromodulation
  • Source localization