Skip to main content
Log in

Postoperative Bildgebung des inneren Gehörgangs

Darstellung aktiver auditorischer Implantate

Postoperative imaging of the internal auditory canal

Visualization of active auditory implants. German version

  • Leitthema
  • Published:
HNO Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Die Beurteilungsfähigkeit des inneren Gehörgangs und der Cochlea ist von zentraler neurootologischer Bedeutung. Bei den verschiedenen Formen aktiver auditorischer Implantate ist aufgrund ihrer ferromagnetischer Komponenten eine auf der Magnetresonanztomographie (MRT) basierende Beurteilung dieser Strukturen typenspezifisch variabel. Die Kenntnis der Ausprägung der typenspezifischen Bildartefakte und die Möglichkeiten, auf diese Einfluss zu nehmen, ist für die auditorische Rehabilitation spezifischer Krankheitsbilder (z. B. Akustikusneurinom) von Bedeutung.

Methodik

Es handelt sich um eine Literaturübersicht.

Ergebnisse

Die postoperative Beurteilung des inneren Gehörgangs und der Cochlea mittels MRT ist nach Versorgung mittels eines aktiven auditorischen Implantats nur bei einer perkutanen Knochenleitungsversorgung („bone-anchored hearing aid“, BAHA; Ponto) problemlos möglich. Unter Berücksichtigung spezifischer Maßnahmen (Implantatpositionierung und MRT-Sequenz) ist eine Beurteilung auch mit einem Cochlea Implantat möglich. Komplikationen wie Magnetdislokation und Schmerz sind zu berücksichtigen.

Schlussfolgerung

Die Beurteilbarkeit von innerem Gehörgang/Cochlea mittels MRT ist für die auditorische Rehabilitation von Patienten nach AKN-Extirpation von großer Bedeutung und sollte berücksichtigt werden.

Abstract

Background

Assessment of the internal auditory canal (IAC) and the cochlea is of central importance in neurotology. The artefacts and visibility of the different types of active auditory implants in MRI vary, due to their specific ferromagnetic components. Knowledge of the size of MRI artefacts and the options for handling these is important for the auditory rehabilitation of specific diseases (e. g., vestibular schwannoma).

Methods

The current paper is a literature review

Results

MRI assessment of the IAC and cochlea after surgical placement of an active auditory implant is feasible only with a percutaneous bone-anchored hearing aid (BAHA, Ponto). When specific factors (implant position and MRI sequence) are taken into consideration, these structures can be visualized even after cochlear implantation. Complications such as magnet dislocation and pain may occur.

Conclusion

The possibility of assessing the IAC and cochlea by MRI is an important aspect that needs to be taken into consideration when planning the auditory rehabilitation of patients after acoustic neuroma surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Arístegui M, Denia A (2005) Simultaneous cochlear implantation and translabyrinthine removal of vestibular schwannoma in an only hearing ear: report of two cases (neurofibromatosis type 2 and unilateral vestibular schwannoma). Otol Neurotol 26(2):205–210

    Article  PubMed  Google Scholar 

  2. Mukherjee P, Ramsden JD, Donnelly N et al (2013) Cochlear implants to treat deafness caused by vestibular schwannomas. Otol Neurotol 34:1291–1298

    Article  PubMed  Google Scholar 

  3. Jacob R, Stelzig Y, Nopp P, Schleich P (2011) Audiological results with cochlear implants for single-sided deafness. HNO 59(5):453–460

    Article  CAS  PubMed  Google Scholar 

  4. Arndt S, Aschendorff A, Laszig R, Beck R, Schild C, Kroeger S, Ihorst G, Wesarg T (2011) Comparison of pseudobinaural hearing to real binaural hearing rehabilitation after cochlear implantation in patients with unilateral deafness and tinnitus. Otol Neurotol 32(1):39–47

    Article  PubMed  Google Scholar 

  5. Kalin R, Stanton MS (2005) Current clinical issues for MRI scanning of pacemaker and defibrillator patients. Pacing Clin Electrophysiol 28:326–328

    Article  PubMed  Google Scholar 

  6. Arndt S, Kromeier J, Berlis A, Maier W, Laszig R, Aschendorff A (2007) Imaging procedures after bone-anchored hearing aid implantation. Laryngoscope 117(10):1815–1818

    Article  PubMed  Google Scholar 

  7. Badran K, Arya AK, Bunstone D, Mackinnon N (2009) Long-term complications of bone-anchored hearing aids: a 14-year experience. J Laryngol Otol 123:170Y6

    Article  Google Scholar 

  8. Eeg-Olofsson M, Håkansson B, Reinfeldt S, Taghavi H, Lund H, Jansson KJ, Håkansson E, Stalfors J (2014) The bone conduction implant – first implantation, surgical and audiologic aspects. Otol Neurotol 35(4):679–685

    Article  PubMed  Google Scholar 

  9. Iseri M, Orhan KS, Tuncer U, Kara A, Durgut M, Guldiken Y, Surmelioglu O (2015) Transcutaneous bone-anchored hearing aids versus percutaneous ones: multicenter comparative clinical study. Otol Neurotol 36(5):849–853

    Article  PubMed  Google Scholar 

  10. Steinmetz C, Mader I, Arndt S, Aschendorff A, Laszig R, Hassepass F (2014) MRI artifacts after bonebridge implantation. Eur Arch Otorhinolaryngol 271(7):2079–2082

    Article  CAS  PubMed  Google Scholar 

  11. Fredén Jansson K‑J, Håkansson B, Reinfeldt S, Rigato C, Eeg-Olofsson M (2015) Magnetic resonance imaging investigation of the bone conduction implant – a pilot study at 1.5 Tesla. Med Devices (Auckl) 8:413–423

    Google Scholar 

  12. Sophono® (2014) Sophono® bone implant precautions, MRI technologist’s guide. http://www.sophono.com/professionals/bone-conduction-hearing-device-product-details. Zugegriffen: 31. August 2015

    Google Scholar 

  13. Todt I, Wagner J, Goetze R et al (2011) MRI scanning in patients implanted with a vibrant soundbridge. Laryngoscope 121:1532–1535

    Article  PubMed  Google Scholar 

  14. Renninger D, Ernst A, Todt I (2015) MRI scanning in patients implanted with a round window or stapes coupled floating mass transducer of the vibrant soundbridge. Acta Otolaryngol 1:1–4

    Google Scholar 

  15. Wagner F, Wimmer W, Leidolt L, Vischer M, Weder S, Wiest R, Mantokoudis G, Caversaccio MD (2015) Significant artifact reduction at 1.5T and 3T MRI by the use of a cochlear implant with removable magnet: an experimental human cadaver study. PLOS ONE 10(7):22

    Google Scholar 

  16. Kim BG, Kim JW, Park JJ, Kim SH, Kim HN, Choi JY (2015) Adverse events and discomfort during magnetic resonance imaging in cochlear implant recipients. JAMA Otolaryngol Head Neck Surg 141(1):45–52

    Article  PubMed  Google Scholar 

  17. Grupe G, Wagner J, Hofmann S, Stratmann A, Mittmann P, Ernst A, Todt I (2016) Prevalence and complications of MRI scans of cochlear implant patients. HNO. doi:10.1007/s00106-016-0128-8

    PubMed  Google Scholar 

  18. Majdani O, Leinung M, Rau T et al (2008) Demagnetization of cochlear implants and temperature changes in 3.0 T MRI environment. Otolaryngol Head Neck Surg 139:833–839

    Article  PubMed  Google Scholar 

  19. Majdani O, Rau TS, Gotz F et al (2009) Artifacts caused by cochlear implants with non-removable magnets in 3 T MRI: phantom and cadaveric studies. Eur Arch Otorhinolaryngol 266:1885–1890

    Article  PubMed  Google Scholar 

  20. Hassepass F, Stabenau V, Maier W et al (2014) Revision surgery due to magnet dislocation in cochlear implant patients: an emerging complication. Otol Neurotol 35:29–34

    Article  PubMed  Google Scholar 

  21. Gjuric M, Rudic M (2008) What is the best tumor size to achieve optimal functional results in vestibular schwannoma surgery? Skull Base 18(5):317–325

    Article  PubMed  PubMed Central  Google Scholar 

  22. Beutner C, Mathys C, Turowski B, Schipper J, Klenzner T (2015) Cochlear obliteration after translabyrinthine vestibular schwannoma surgery. Eur Arch Otorhinolaryngol 272(4):829–833

    Article  PubMed  Google Scholar 

  23. Hassepass F, Arndt S, Aschendorff A, Laszig R, Wesarg T (2015) Cochlear implantation for hearing rehabilitation in single-sided deafness after translabyrinthine vestibular schwannoma surgery. Eur Arch Otorhinolaryngol 273(9):2373–2383. doi:10.1007/s00405-015-3801-8

    Article  PubMed  Google Scholar 

  24. Stratmann A, Rademacher G, Mittmann P, Grupe G, Hofmann S, Mutze S, Ernst A, Todt I (2016) MRI-based estimation of scalar cochlear implant electrode position. Otol Neurotol (submitted)

  25. Walton J, Donnelly NP, Tam YC et al (2014) MRI without magnet removal in neurofibromatosis type 2 patients with cochlear and auditory brainstem implants. Otol Neurotol 35:821–825

    Article  PubMed  Google Scholar 

  26. Todt I, Rademacher G, Mittmann P et al (2015) MRI artifacts and cochlear implant positioning at 3 T in vivo. Otol Neurotol 36:972–976

    Article  PubMed  Google Scholar 

  27. Hofmann S, Grupe G, Stratmann A, Rademacher G, Mittmann P, Ernst A, Todt I (2015) MRT-Artefakte und CI Positionierung unter 1,5 T in vivo. ADANO Herbsttagung, Bern, 10.–11. September 2015, Vortrag 36

  28. Grupe G, Rademacher G, Hofmann S, Stratmann A, Mittmann P, Mutze S, Ernst A, Todt I (2016) Evaluation of cochlear implant receiver position and its temporal changes. Otol Neurotol (submitted)

  29. Kim JH, Min KS, An SK, Jeong JS, Jun SB, Cho MH, Son YD, Cho ZH, Kim SJ (2012) Magnetic resonance imaging compatibility of the polymer-based cochlear implant. Clin Exp Otorhinolaryngol 5(Suppl 1):S19–S23

    Article  PubMed  PubMed Central  Google Scholar 

  30. Nospes S, Mann W, Keilmann A (2013) Magnetic resonance imaging in patients with magnetic hearing implants: overview and procedural management. Radiologe 53(11):1026–1032

    Article  CAS  PubMed  Google Scholar 

  31. Wagner, Rademacher, Mutze, Seidl, Ernst, Todt (2014) Evaluation of MRI artifacts caused by hearing implants in cadaver heads: assessment of the internal auditory canal. #P1-2-12. Cochlear Implant International, München, 18.–20. Juni

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Todt.

Ethics declarations

Interessenkonflikt

I. Todt, G. Rademacher, P. Mittmann, S. Mutze und A. Ernst geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Additional information

Die englische Version dieses Beitrags ist unter doi 10.1007/s00106-016-0296-6 zu finden.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Todt, I., Rademacher, G., Mittmann, P. et al. Postoperative Bildgebung des inneren Gehörgangs. HNO 65, 735–740 (2017). https://doi.org/10.1007/s00106-016-0295-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00106-016-0295-7

Schlüsselwörter

Keywords

Navigation