Skip to main content
Log in

Intraoperative Navigation mit Fokus auf der Schädelbasis

Intraoperative navigation, with focus on the skull base

  • Leitthema
  • Published:
HNO Aims and scope Submit manuscript

Zusammenfassung

Intraoperative Navigationssysteme sind in breiter Anwendung in der HNO-, MKG- und Neurochirurgie. Die Vorteile der Systeme in verschiedensten Anwendungen wie intrakraniellen und Schädelbasis-Operationen sind vielfach beschrieben worden. Intraoperative Verschiebungen, „brain shift“ und Veränderungen der Anatomie durch den chirurgischen Eingriff selbst verschlechtern die Genauigkeit der Navigation und sind ein limitierender Faktor für den Einsatz, besonders in der Gliomchirurgie. Dies war der Grund der Einführung der intraoperativen Bildgebung, v. a. in der Neurochirurgie. Eine Anwendung liegt daher in der Schädelbasischirurgie, wo die knöchernen Strukturen Verschiebungen weitgehend verhindern. Besser in den Operationsablauf integrierte Systeme führten zum Routineeinsatz der Navigation in der Neuro- und HNO-Chirurgie. An der Schädelbasis im Überschneidungsbereich der verschiedenen Fachbereiche erwies sich die Navigation als besonders hilfreich. Zwar wurden dadurch radikalere Eingriffe möglich, diese waren aber mit einem hohen Morbiditätsrisiko verbunden. Um funktionserhaltend vorgehen zu können, wurden Methoden zum elektrophysiologischen Funktionsmonitoring integriert, was zu weniger invasiven und radikalen Eingriffen führte. Neue Methoden der Radiochirurgie zur adjuvanten Therapie möglicher Tumorreste haben diese Entwicklung begünstigt. Mit Systemen, die eine Markierung von Resektionsgrenzen im Navigationsdatensatz erlauben, wäre eine direkte Datenübergabe zur Bestrahlungsplanung und besseren Interpretation der Kontrollbildgebung möglich. Damit ermöglicht die Navigation eine effektivere interdisziplinäre Kooperation in der Schädelbasischirurgie zum Wohl der Patienten.

Abstract

Intraoperative navigation systems are widely used in ENT, oral and maxillofacial, and neurosurgery. The benefits of such systems have been demonstrated in various applications, including intracranial and skull base surgery. Intraoperative shift, “brain shift” and changes in anatomy caused by the surgical procedure itself impair the accuracy of navigation and represent factors limiting its application, particularly in glioma and metastatic brain surgery. For this reason, intraoperative imaging was incorporated into neurosurgery. A specific application of navigation is thus skull base surgery, where shifts are often negligible due to the bony structures in which pathologies are embedded. Development of new systems with seamless integration into the operative workflow propagated routine use of navigation in neuro- and ENT surgery. Navigation proved especially helpful in interdisciplinary surgery with pathologies located in anatomic regions where competences of different surgical disciplines overlap, as in the skull base. While this increased radicality in tumour resection, there was a high risk of morbidity. The integration of electrophysiological function monitoring served to preserve function and reduce morbidity, and has led to less invasive and radical strategies in skull base surgery. New radiosurgical methods to adjuvantly treat possible tumour remnants have also supported this development. Systems allowing resection borders to be marked in the navigational coordinates would enable direct linking of these data to radiotherapy planning and better interpretation of follow-up imaging. Navigation is thus a valuable tool supporting interdisciplinary cooperation in skull base surgery for the benefit of patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Coburger J, Hagel V, Wirtz CR, König R (2015) Surgery for Glioblastoma: impact of the combined use of 5‑Aminolevulinic Acid and Intraoperative MRI on extent of resection and survival. PLoS ONE 10(6):e0131872

    Article  PubMed  PubMed Central  Google Scholar 

  2. Coburger J, Scheuerle A, Kapapa T, Engelke J, Thal DR, Wirtz CR, König R (2015) Sensitivity and specificity of linear array intraoperative ultrasound in glioblastoma surgery: A comparative study with high field intraoperative MRI and conventional sector array ultrasound. Neurosurg Rev 38(3):499–509

    Article  PubMed  Google Scholar 

  3. Coburger J, Merkel A, Scherer M et al (2016) Low-grade Glioma Surgery in Intraoperative Magnetic Resonance Imaging I: Results of a multicenter retrospective assessment of the German Study Group for Intraoperative Magnetic Resonance Imaging. Neurosurgery 78(6):775–786

    Article  PubMed  Google Scholar 

  4. Ecke U, Khan M, Maurer J, Boor S, Mann WJ (2002) Intraoperative Navigation in der Chirurgie der Nasennebenhöhlen und der vorderen Schädelbasis Fehlerquellen und Störfaktoren. HNO 50:928–934

    Article  CAS  PubMed  Google Scholar 

  5. Freysinger W, Gunkel AR, Bale R, Vogele M, Kremser C, Schon G, Thumfart WF (1998) Three-dimensional navigation in otorhinolaryngological surgery with the viewing wand. Ann Otol Rhinol Laryngol 107:953–958

    Article  CAS  PubMed  Google Scholar 

  6. Grauvogel TD, Becker C, Hassepass F, Arndt S, Laszig R, Maier W (2015) Comparison of 3D C‑arm-based registration to conventional pair-point registration regarding navigation accuracy in ENT surgery. Otolaryngol Head Neck Surg 152(2):266–271

    Article  PubMed  Google Scholar 

  7. Hassfeld S, Mühling J (2001) Computer assisted oral and maxillofacial surgery – a review and an assessment of technology. Int J oral Maxillofac Surg 30:2–13

    Article  CAS  PubMed  Google Scholar 

  8. Hlaváč M, Kunze S, Christian Wirtz RCR (2015) Navigation und intraoperative Magnetresonanztomografie. In: Moskopp D, Wassmann H (Hrsg) Neurochirurgie, 2. Aufl. Schattauer, Stuttgart, S 363–372

    Google Scholar 

  9. Paraskevopoulos D, Unterberg A, Metzner R, Dreyhaupt J, Eggers G, Wirtz CR (2010) Comparative study of application accuracy of two frameless neuronavigation systems: Experimental error assessment quantifying registration methods and clinically influencing factors. Neurosurg Rev 34(2):217–228

    Article  PubMed  Google Scholar 

  10. Raabe A, Krishnan R, Wolff R, Hermann E, Zimmermann M, Seifert V (2002) Laser surface scanning for patient registration in intracranial image-guided surgery. Neurosurgery 50(4):797–801

    Article  PubMed  Google Scholar 

  11. Reinhardt HF, Meyer H, Amrein E (1986) Computer aided surgery, ein erster Schritt: Robotik für Hirnoperationen? Polyscope Plus 6:1–6

    Google Scholar 

  12. Roberts DW, Strohbehn JW, Hatch JF, Murray W, Kettenberger H (1986) A frameless stereotaxic integration of computerized tomographic imaging and the operating microscope. J Neurosurg 65(4):545–549

    Article  CAS  PubMed  Google Scholar 

  13. Schlöndorff G, Mösges R, Meyer-Ebrecht D, Krybus W, Adams L (1989) CAS (computer assisted surgery). A new procedure in head and neck surgery. HNO 37(5):187–190

    PubMed  Google Scholar 

  14. Watanabe E, Watanabe T, Manaka S, Mayanagi Y, Takakura K (1987) Three-dimensional digitizer (Neuronavigator): New equipment for computer-tomography guided stereotaxic surgery. Surg Neurol 27(6):543–547

    Article  CAS  PubMed  Google Scholar 

  15. Wirtz CR, Tronnier VM, Bonsanto MM, Knauth M, Staubert A, Albert FK, Kunze S (1997) Image-guided neurosurgery with intraoperative MRI: Update of frameless stereotaxy and radicality control. Stereotact Funct Neurosurg 68:39–43

    Article  CAS  PubMed  Google Scholar 

  16. Wirtz CR, Knauth M, Hassfeld S, Tronnier VM, Albert FK, Bonsanto MM, Kunze S (1998) Neuronavigation – first experiences with three different commercially available systems. Zentralbl Neurochir 59:14–22

    CAS  PubMed  Google Scholar 

  17. Wirtz CR, Albert FK, Schwaderer M, Heuer C, Staubert A, Tronnier VM, Knauth M, Kunze S (2000) The benefit of neuronavigation for neurosurgery analyzed by its impact on glioblastoma surgery. Neurol Res 22(4):354–360

    Article  CAS  PubMed  Google Scholar 

  18. Wirtz CR, Knauh M, Stamov M, Bonsanto MM, Metzner R, Kunze S, Tronnier VM (2002) The clinical impact of intraoperative MRI in CNS neoplasia. Tech Neurosurg 7:326–331

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. R. Wirtz.

Ethics declarations

Interessenkonflikt

C.R. Wirtz gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wirtz, C.R. Intraoperative Navigation mit Fokus auf der Schädelbasis. HNO 64, 635–640 (2016). https://doi.org/10.1007/s00106-016-0215-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00106-016-0215-x

Schlüsselwörter

Keywords

Navigation