Skip to main content
Log in

Knochenersatzmaterialien zur Sinusbodenelevation

Bone substitutes used for sinus lift

  • Leitthema
  • Published:
HNO Aims and scope Submit manuscript

Zusammenfassung

Für den Sinusbodenlift werden in der dentalen Chirurgie heute die unterschiedlichsten Materialien wie Knochenersatzmaterialien und Membranen verwendet. Nach dem vermehrten Einsatz von synthetischen Produkten noch vor etwa 10 Jahren geht der Trend heute wieder zurück zum autologen Knochentransplantat kombiniert mit allogenen oder xenogenen Ersatzmaterialien. Der Wert neuerer synthetischer Materialien in Verbindung mit rekombinant hergestellten Wachstumsfaktoren bleibt abzuwarten. Im Bereich der Membranen werden heute vorwiegend Kollagenprodukte eingesetzt. Vor jeder Augmentation sind dentogene und sinugene Begleiterkrankungen durch Anamnese und bildgebende Verfahren und bei v. a. Sinusitis durch eine HNO-ärztliche Konsiliaruntersuchung auszuschließen. Verletzungen der Schneiderschen Membran, Infektionen und Unverträglichkeitsreaktionen sind die häufigsten Komplikationen beim Sinuslift, ihre frühzeitige konsequente Therapie ist entscheidend.

Abstract

In dental surgery today a variety of bone substitutes are used for sinus lift. After the increased application of synthetics during the last decade there has now been a move back to autologous bone transplants, combined with allogenic and xenogenic augmentation materials. The effects of transforming growth factors and recombinant equivalents of bone morphogenetic proteins remain to be seen. Covering the augmented area with a collagen membrane is the basic standard in many cases. Concomitant illnesses of dental origin or of the maxillary sinus have to be assessed prior to any sinus lift. Once complications such as laceration of the Schneiderian membrane, infection or adverse reaction have occurred, early and consistent therapy is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8
Abb. 9
Abb. 10

Literatur

  1. Abrahams JJ (2000) Sinus lift procedure of the maxilla in patients with inadequate bone for dental implants. Am J Roentgenol 174(5):1289–1292

    Article  CAS  Google Scholar 

  2. Abshagen K, Schrodi I, Gerber T, Vollmar B (2009) In vivo analysis of biocompatibility and vascularization of the synthetic bone grafting substitute NanoBone. J Biomed Mater Res A 91(2):557–566

    Article  CAS  PubMed  Google Scholar 

  3. Aghaloo TL, Moy PK (2007) Which hard tissue augmentation techniques are the most successful in furnishing bony support for implant placement? J Oral Maxillofac Implant 22(Suppl):49–47

    Google Scholar 

  4. Anitua E (2001) Preparation Technique for P.R.G.F. – Platelet Activation and Aggregation. In: A new approach to bone regeneration. Puesta al Dia Publicaciones, S.L.

    Google Scholar 

  5. Benner KU, Heuckmann KH, Bauer F (2006) Das Ballon-Lift-Control System – eine Technik zur minimalinvasiven Elevation der Sinusboden-Schleimhaut. Implant J 5:18–25

    Google Scholar 

  6. Buser D (2011) Membrangeschützte Knochenregeneration in der Implantologie, Quintessenz, Ito K, Yamada Y, Nakamura S, Ueda M.: Osteogenic potential of effective bone engineering using dental pulp stem cells, bone marrow stem cells, and periosteal cells for osseointegration of dental implants. Int J Oral Maxillofac Implant 26(5):947–954

    Google Scholar 

  7. Corinaldesi G, Piersanti L, Piattelli A, Iezzi G, Pieri F, Marchetti C (2013) Augmentation of the floor of the maxillary sinus with recombinant human bone morphogenetic protein-7: a pilot radiological and histological study in humans. Br J Oral Maxillofac Surg 51(3):247–252

    Article  PubMed  Google Scholar 

  8. Esposito M, Grusovin MG, Felice P, Karatzopoulos G, Worthington HV, Coulthard P (2009) The efficacy of horizontal and vertical bone augmentation procedures for dental implants – a Cochrane systematic review. Eur J Oral Implantol 2(3):167–184

    PubMed  Google Scholar 

  9. Esposito M, Grusovin MG, Rees J, Karasoulos D, Felice P, Alissa R, Worthington HV, Coulthard P (2010) Interventions for replacing missing teeth: augmentation procedures of the maxillary sinus. Cochrane Database Syst Rev CD008397(3): (PMID 20238367) doi:10.1002/14651858.CD008397

    Google Scholar 

  10. Fleming JE, Cornell CN, Muschler GF (2000) Bone cells and matrices in orthopedic tissue engineering. Orthop Clin N Am 31(3):357–374

    Article  Google Scholar 

  11. Froum SJ I, Wallace SS, Elian N, Cho SC, Tarnow DP (2006) Comparison of mineralized cancellous bone allograft (Puros) and anorganic bovine bone matrix (Bio-Oss) for sinus augmentation: histomorphometry at 26 to 32 weeks after grafting. Int J Periodontics Restor Dent 26(6):543–551

    Google Scholar 

  12. Gerressen M, Prescher A, Riediger D, van der Ven D, Ghassemi A (2008) Tibial versus iliac bone grafts: a comparative examination in 15 freshly preserved adult cadavers. Clin Oral Implant Res 19(12):1270–1275

    Article  Google Scholar 

  13. Grusovin MG, Felice P, Karatzopoulos G, Worthington HV, Coulthard P (2009) Interventions for replacing missing teeth: horizontal and vertical bone augmentation techniques for dental implant treatment. Cochrane Database Syst Rev 2010(8):CD003069. doi:10.1002/14651858.CD003069.pub4 (Review. PMID: 20687072)

    Google Scholar 

  14. Huber FX, Belyaev O, Hillmeier J, Kock HJ, Huber C, Meeder PJ, Berger I (2006) First histological observations on the incorporation of a novel nanocrystalline hydroxyapatite paste OSTIM in human cancellous bone. BMC Musculoscelet Disord 7:50

    Article  Google Scholar 

  15. Jensen SS, Terheyden H (2009) Bone augmentation procedures in localized defects in the alveolar ridge: clinical results with different bone grafts and bone-substitute materials. Int J Oral Maxillofac Implant 24(Suppl):218–236

    Google Scholar 

  16. Kao ST, Scott DD (2007) A review of bone substitutes. Oral Maxillofac Surg Clin N Am 19(4):513–521 (Review)

    Article  Google Scholar 

  17. Kasagi S, Chen W (2013) TGF-beta1 on osteoimmunology and the bone component cells. Cell Biosci 3(1):4–

    Article  PubMed Central  PubMed  Google Scholar 

  18. Kayabasoglu G, Nacar A, Altundag A, Cayonu M, Muhtarogullari M, Cingi C (2014) A retrospective analysis of the relationship between rhinosinusitis and sinus lift dental implantation. Head Face Med 10(1):53–15

    Article  PubMed Central  PubMed  Google Scholar 

  19. Kaysinger KK, Ramp WK, Cell J (1998) Biochem 68:83–89

  20. Khoury F (2009) Augmentive Verfahren in der oralen Implantogie. Quintessenz, Berlin

    Google Scholar 

  21. Köster K, Karbe E, Kramer H, Heide H, König R (1976) Experimental bone replacement with resorbable calcium phosphate ceramic (author’s transl). Langenbecks Arch Chir 341(2):77–86

    Article  PubMed  Google Scholar 

  22. McAndrew MP, Gorman PW, Lange TA (1988) Tricalcium phosphate as a bone graft substitute in trauma: preliminary report. J Orthop Trauma 2(4):333–339

    Article  CAS  PubMed  Google Scholar 

  23. Middleton JC, Tipton AJ (2000) Synthetic biodegradable polymers as orthopedic devices. Biomaterials 21:2335–2346

    Article  CAS  PubMed  Google Scholar 

  24. Misch CE, Dietsh F (1993) Bone-grafting materials in implant dentistry. Implant Dent 2:158–167

    Article  CAS  PubMed  Google Scholar 

  25. Peterson B, Whang P, Inglesias R, Wang J, Lieberman J (2004) J Bone Jt Surg 86-A:2243–2250

    Google Scholar 

  26. Pjetursson BE, Rast C, Bragger U, Schmidlin K, Zwahlen M, Lang NP (2009) Maxillary sinus floor elevation using the (transalveolar) osteotome technique with or without grafting material. Part I: Implant survival and patients’ perception. Clin Oral Implant Res 20:667–676

    Article  Google Scholar 

  27. Plöger M, Schau I (2012) Kieferkammrekonstruktion mit individuellen CAD/CAM-gefertigten allogenen Knochenblöcken. Dent Implantol 16(7):426–431

    Google Scholar 

  28. Rosenberg ES, Gregory KF, Cohen C (2000) Bioactive glass granules for regeneration of human peridontal defects. J Esthet Dent 12:248–257

    Article  CAS  PubMed  Google Scholar 

  29. Rueger JM (1998) Knochenersatzmittel. Heutiger Stand und Ausblick. Orthopäde 27(2):72–79

    CAS  PubMed  Google Scholar 

  30. Schlegel KA, Fichtner G, Schultze-Mosgau S, Wiltfang J (2003) Histologic findings in sinus augmentation with autogenous bone chips versus a bovine bone substitute. Int J Oral Maxillofac Implant 18(1):53–58

    Google Scholar 

  31. Sela MN, Steinberg D, Klinger A, Krausz AA, Kohavi D (1999) Adherence of periodontopathic bacteria to bioabsorbable and non-absorbable barrier membranes in vitro. Clin Oral Implant Res 10(6):445–452

    Article  CAS  Google Scholar 

  32. Smeets R, Kolk A (2009) Osteokonduktive und -induktive Knochenersatzmaterialien. ZMK 6/2010(27):328–340

    Google Scholar 

  33. Steigmann M (2006) Pericardium membrane and xenograft particulate grafting materials for horizontal alveolar ridge defects. Implant Dent 15:186–191

    Article  PubMed  Google Scholar 

  34. Summers RB (1994) A new concept in maxillary implant surgery: The osteotome technique. Compendium 15(152):154–156 (158 passim; quiz 162)

    Google Scholar 

  35. Summers RB (1994) The osteotome technique: Part 3 – Less invasive methods of elevating the sinus floor. Compendium 15:698 (700, 702–694 passim; quiz 710)

    CAS  PubMed  Google Scholar 

  36. Tatum H Jr. (1986) Maxillary and sinus implant reconstructions. Dent Clin N Am 30:207–229

    PubMed  Google Scholar 

  37. van Hinsbergh VW, Collen A, Koolwijk P (2001) Role of fibrin matrix in angiogenesis. Ann N Y Acad Sci 936:426–437

    Article  PubMed  Google Scholar 

  38. Wallace SS, Froum SJ (2003) Effect of maxillary sinus augmentation on the survival of endosseous dental implants. A systematic review. Ann Periodontol 8:328–343

    Article  PubMed  Google Scholar 

  39. Weber RK (2015) Aktueller Stand der endonasalen Nasennebenhöhlenchirurgie. Laryngorhinootologie 94(Suppl 1):64–142

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Kamm.

Ethics declarations

Interessenkonflikt

T. Kamm, S. Kamm und W. Heppt geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamm, T., Kamm, S. & Heppt, W. Knochenersatzmaterialien zur Sinusbodenelevation. HNO 63, 481–488 (2015). https://doi.org/10.1007/s00106-015-0031-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00106-015-0031-8

Schlüsselwörter

Keywords

Navigation