Skip to main content
Log in

Wirkmechanismen nasaler Glukokortikosteroide in der Therapie der allergischen Rhinitis

Teil 2: Praxisorientierte Aspekte der Anwendung

Mechanism of action of nasal glucocorticosteroids in the treatment of allergic rhinitis

Part 2: Practical aspects of application

  • Originalien
  • Published:
HNO Aims and scope Submit manuscript

Zusammenfassung

Glukokortikosteroide (GCS) werden bei allergischer Rhinitis (AR) in der Regel topisch eingesetzt. Der Vorteil gegenüber anderen Substanzklassen ist u. a. die hohe Wirksamkeit auf die nasale Inflammation/Obstruktion. Die Patienten müssen darauf hingewiesen werden, dass eine Beschwerdebesserung nicht sofort zu erwarten ist, sondern bei intermittierender Rhinitis nach etwa 2–4 Tagen, bei persistierender Rhinitis nach etwa 2–3 Wochen. Sprays mit nasalen GCS (nGCS) müssen regelmäßig angewandt werden. Eine Anwendung „bei Bedarf“ ist weder wirkungs- noch sinnvoll. Eine Indikation für GCS sind hyperplastische Verlaufsformen perennialer Rhinitiden, oft als Begleittherapie zur operativen Sanierung der Nasenmuscheln und/oder Nasennebenhöhlen. Neue Erkenntnisse deuten darauf hin, dass intranasal applizierte GCS sich nicht nur positiv auf die nasale Symptomatik auswirken, sondern zudem auch okulare Beschwerden lindern können. Zudem wurde gezeigt, dass nGCS auch in der prophylaktischen Therapie einer saisonalen AR von Nutzen sein können. Diese Theorie wird durch Kenntnisse über die molekularen Mechanismen der antiinflammatorischen Wirkung von nGCS gestützt. Demnach sollten nasale Glukokortikosteroide als wesentliche medikamentöse Therapieoption bei AR in Betracht gezogen werden.

Abstract

Allergic rhinitis (AR) is the single most common allergic disease and one of the most common chronic diseases. It affects approximately 25–30% of the population, and can substantially worsen patients’ medical conditions, reduce quality of life, and contribute to absenteeism from work or school. It is also responsible for substantial direct and indirect economic burdens on the health care system.

The medical management of allergic rhinitis includes several available pharmacotherapies, such as α-sympathomimetics, anticholinergic drugs, natural saline or other nasal rinses, mast cell-stabilizing agents, topical and systemic antihistamines, topical and systemic glucocorticosteroids, leukotriene-receptor antagonists and the new monoclonal antibodies following a stepwise approach. Allergen-specific immunotherapy is the only treatment option that interferes with the natural course of the disease and, besides allergen elimination, is thought to be the only causative treatment option.

Nasal glucocorticosteroids (nGCS) are thought to be the most effective treatment choice for controlling the symptoms of AR. Double-blind, randomized clinical trials have demonstrated greater efficacy of nGCSs versus placebo, antihistamines or montelukast for relief of all nasal symptoms, especially congestion. Therefore, especially in the management of AR-related nasal inflammation and congestion, nGCSs are considered the most appropriate treatment. Patients should be informed that symptom improvement can be expected after 2–4 days for intermittent rhinitis and after up to 2–3 weeks for persistent rhinitis. The medication has to be taken regularly and not as “on-demand” treatment. Adherence to treatment also affects outcomes, and this may be influenced by patient preferences for the sensory attributes of an individual drug and the awareness of possible side effects.

More recently, safety studies have shown that the newer nGCS agents have improved safety profiles compared with older nGCS agents. The newer nGCS drugs have been found to have minimal adverse effects on growth and hypothalamic-pituitary-adrenal-axis function in children. This review will discuss the pathophysiology of allergic inflammation in the nasal mucosa and the mechanism of action of nGCSs; also the efficacy and safety of nGCSs will be discussed by focusing on clinical evidence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

APZ:

antigenpräsentierende Zellen

AP-1:

“activator protein-1”

AR:

allergische Rhinitis

BALF:

bronchoalveoläre Lavageflüssigkeit

bFGF:

“basic fibroblast growth factor“

cysLT:

Cysteinyl-Leukotriene

CD:

“cluster of differentiation”

cDNA:

“complementary“ Desoxyribonukleinsäure

DC:

dendritische Zelle

ECP:

eosinophiles kationisches Protein

EIA:

Enzymimmunoassay

FcεRI:

hochaffine IgE-Rezeptoren

Foxp3:

Forkhead Box P3

GILZ:

“glucosteroid-induced-leucine zipper”

GM-CSF:

“granulocyte macrophage colony-stimulating factor”

GR:

Glukokortikoidrezeptor

H1-Rezeptor:

Histaminrezeptor vom Typ 1

ICAM-1:

interzelluläres Adhäsionsmolekül 1

IFN:

Interferon

IgE:

Immunglobulin E

IL:

Interleukin

LT:

Leukotriene

MHC:

“major histocompatibility complex”

mRNA:

Messenger-Ribonukleinsäure

NFκB:

“nuclear factor kappa B”

nGCS:

nasale Glukokortikosteroide

NGF:

“nerval growth factor”

NO:

Stickstoffmonoxid

PAF:

plättchenaktivierender Faktor

PG:

Prostaglandin

TARC:

“thymus and activation regulated chemokine”

TGF:

“transforming growth factor”

TH1 :

T-Helferzellen vom Typ 1

TH2 :

T-Helferzellen vom Typ 2

TLR-Rezeptor:

Toll-like-Rezeptor

TNF-α:

Tumornekrosefaktor-α

TOVAs:

“test of variables of attention”

TXA2:

Thromboxan A2

Treg-Zellen:

T-regulatorische Zellen (Lymphozyten)

VCAM:

“vascular cell adhesion molecule”

VEGF:

“vascular endothelial growth factor”

Literatur

  1. Klimek L, Schendzielorz P, Högger P (2010) Nasale Glukokortikosteroid-Therapie: Ein Update. Allergologie 34(6):307–318

    Google Scholar 

  2. Schäfer T, Schnoor M, Wagenmann M et al (2011) Therapeutic Index (TIX) for intranasal corticosteroids in the treatment of allergic rhinitis. Rhinology 49(3):272–280

    PubMed  Google Scholar 

  3. Hartl D, Koller B, Mehlhorm AT et al (2007) Quantitative and functional impairment of pulmonary CD4 + CD25high regulatory T cells in pediatric asthma. J Allergy Clin Immunol 119:1258–1266

    Article  PubMed  CAS  Google Scholar 

  4. Li HB, Cai KM, Liu Z et al (2008) T regulatory cells (Tregs) are increased in nasal polyps (NP) after treatment with intranasal steroid. Clin Immunol 129:394–400

    Article  PubMed  CAS  Google Scholar 

  5. Chen X, Oppenheim JJ, Winkler-Pickett R et al (2006) Glucocorticoid amplifies IL-2-dependent expansion of functional FoxP3 + CD4 + CD25 + T regulatory cell in vivo and enhances their capacity to suppress EAE. Eur J Immunol 36:2139–2149

    Article  PubMed  CAS  Google Scholar 

  6. Hamdi H, Godot V, Maillot MC et al (2007) Induction of antigen-specific regulatory T lymphocytes by human dendritic cell expressing glucocorticoid-induced leucin zipper. Blood 110:211–219

    Article  PubMed  CAS  Google Scholar 

  7. Benninger MS, Ahmad N, Marple BF (2003) The safety of intranasal steroids. Otolaryngol Head Neck Surg 129:739–750

    Article  PubMed  Google Scholar 

  8. Allen DB, Melzer EO, Lemanske RF Jr et al (2002) No growth suppression in children treated with the maximum recommended dose of fluticasone propionate aqueous nasal spray for one year. Allergy Asthma Proc 23:407–413

    PubMed  CAS  Google Scholar 

  9. Schenkel EJ, Skoner DP, Bronsky EA et al (2000) Absence of growth retardation in children with perennial allergic rhinitis after one year of treatment with mometasone furoate aqueous nasal spray. Pediatrics 105:e22

    Article  PubMed  CAS  Google Scholar 

  10. Daley-Yates PT, Kunka RL, Yin Y et al (2004) Bioavailability of flutiasone propionate and mometasone furoate aqueous nasal sprays. Eur J Clin Pharmacol 60:265–268

    Article  PubMed  CAS  Google Scholar 

  11. Okubo K, Nakashima M, Miyake N et al (2009) Comparison of fluticasone furoate and fluticasone propionate for the treatment of Japanese cedar pollinosis. Allergy Asthma Proc 30:84–94

    Article  PubMed  Google Scholar 

  12. Arikan OK, Koc C, Kendi T et al (2006) CT assessment of the effect of fluticasone propionate aqueous nasal spray treatment on lower turbinate hypertrophy due to vasomotor rhinitis. Acta Otolaryngol 126:37–42

    Article  PubMed  CAS  Google Scholar 

  13. Brooks CD, Karl KJ, Francom SF (1993) Oral methylprednisolone acetate (Medrol tablets) for seasonal allergic rhinitis: examination of dose and symptom response. J Clin Pharmacol 33:816–822

    PubMed  CAS  Google Scholar 

  14. Vargas R, Dockhorn RJ, Findlay SR et al (1998) Effect of fluticasone propionate aqueous nasal spray versus oral prednisone on the hypothalamic–pituitary–adrenal axis. J Allergy Clin Immunol 102:191–197

    Article  PubMed  CAS  Google Scholar 

  15. Mygind N, Laursen LC, Dahl M (2000) Systemic corticosteroid treatment for seasonal allergic rhinitis: a common but poorly documented therapy. Allergy 55:11–15

    Article  PubMed  CAS  Google Scholar 

  16. Nasser SMS, Ewan PW (2001) Depot corticosteroid treatment for hay fever causing avascular necrosis of both hips. BMJ 322:1589–1591

    Article  PubMed  CAS  Google Scholar 

  17. Brozek JL, Bousquet J, Baena-Cagnani CE et al. (2010) Allergic Rhinitis and its Impact on Asthma (ARIA) guidelines: 2010 revision. J Allergy Clin Immunol 126(3):466–476

    Article  PubMed  Google Scholar 

  18. Bernstein DI, Levy AL, Hampel FC et al (2004) Treatment with intranasal fluticasone propionate significantly improves ocular symptoms in patients with seasonal allergic rhinitis. Clin Exp Allergy 34:952–957

    Article  PubMed  CAS  Google Scholar 

  19. Fokkens WJ, Jogi R, Reinartz S et al (2007) Once daily fluticasone furoate nasal spray is effective in seasonal allergic rhinitis caused by grass pollen. Allergy 62:1078–1084

    Article  PubMed  CAS  Google Scholar 

  20. Kaiser HB, Naclerio RM, Given J et al (2007) Fluticasone furoate nasal spray: a single treatment option for the symptoms of seasonal allergic rhinitis. J Allergy Clin Immunol 119:1430–1437

    Article  PubMed  CAS  Google Scholar 

  21. Baroody FM, Foster KA, Markaryan A et al (2008) Nasal ocular reflexes and eye symptoms in patients with allergic rhinitis. Ann Allergy Asthma Immunol 100:194–199

    Article  PubMed  Google Scholar 

  22. Kremer B, Hartog HM den, Jolles J (2002) Relationship between allergic rhinitis, disturbed cognitive functions and psychological wellbeing. Clin Exp Allergy 32:1310–1315

    Article  PubMed  CAS  Google Scholar 

  23. Walker S, Khan-Wasti S, Fletcher M et al (2007) Seasonal allergic rhinitis is associated with a detrimental effect on examination performance in United Kingdom teenagers: case–control study. J Allergy Clin Immunol 120:381–387

    Article  PubMed  Google Scholar 

  24. Young T, Finn L, Kim H (1997) Nasal obstruction as a risk factor for sleep-disordered breathing. The University of Wilcoxon Sleep and Respiratory Research Group. J Allergy Clin Immunol 99:757–762

    Article  Google Scholar 

  25. Vuurman EPF, Veggel LMA van, Uiterwijk MMC et al (1993) Seasonal allergic rhinitis and anti-histamine effect on children’s learning. Ann Allergy 71:121–126

    PubMed  CAS  Google Scholar 

  26. Craig TJ, Hanks CD, Fisher LH (2005) How do topical nasal corticoids improve sleep and daytime somnolence in allergic rhinitis? J Allergy Clin Immunol 116:1264–1266

    Article  PubMed  CAS  Google Scholar 

  27. Mansfield LE, Posey CR (2007) Daytime sleepiness and cognitive performance improve in seasonal allergic rhinitis treated with intranasal fluticosone propionate. Allergy Asthma Proc 28:226–229

    Article  PubMed  CAS  Google Scholar 

  28. Kawauchi H (2004) Medication for allergic rhinitis. Otolaryngol Head Neck Surg 76:39–44

    Google Scholar 

  29. Graft D, Aaronson D, Chervinsky P et al (1996) A placebo- and active-controlled randomized trial of prophylactic treatment of seasonal allergic rhinitis with mometasone furoate aqueous nasal spray. J Allergy Clin Immunol 98:724–731

    Article  PubMed  CAS  Google Scholar 

  30. Yokoo E (2005) Prophylactic treatment of Japanese cedar pollinosis with intranasal coriticosteroids. Prog Med 25:3195–3199

    Google Scholar 

  31. Okubo K, Nagakura T, Usui H et al (2005) Evaluation of efficacy, safety and effects on rhinitis-specific QOL by fluticasone propionate in pediatric patients with seasonal allergic rhinitis. Allergol Immunol 12:318–331

    Google Scholar 

  32. Pascual G, Glass CK (2006) Nuclear receptors versus inflammation: mechanisms of transrepression. Trends Endocrinol Metab 17:321–327

    Article  PubMed  CAS  Google Scholar 

  33. Saito M, Takayanagi R, Goto K et al. (2002) The presence of both the amino- and carboxyl-terminal domains in the AR is essential for the completion of a transcriptionally active form with coactivators and intranuclear compartmentalization common to the steroid hormone receptors: a three-dimensional imaging study. Mol Endocrinol 16:694–706

    Article  Google Scholar 

  34. Adcock IM, Ito K, Barnes PJ (2004) Glucocorticoids: effects on gene transcription. Proc Am Thorac Soc 1:247–254

    Article  PubMed  CAS  Google Scholar 

  35. Navarro A, Valero A, Rosales MJ, Mullol J (2011) Clinical use of oral antihistamines and intranasal corticosteroids in patients with allergic rhinitis. J Investg Allergol Clin Immunol 21(5):363–369

    CAS  Google Scholar 

  36. Soderberg-Warner ML (1984) Nasal septal perforation associated with topical corticosteroid therapy. J Pediatr 105(5):840–841

    Article  PubMed  CAS  Google Scholar 

  37. Cheng CC, Baroody FM, Reed KC et al (1997) Effects of one year treatment with fluticasone propionate aqueous nasal spray (FPANS) and terfenadine (TER) on the nasal mucosa: I. A safety study using electron and light microscopy. J Allergy Clin Immunol 99:2013–2013

    Article  Google Scholar 

  38. Pipkorn U, Pukander J, Suonpaa J et al (1988) Long-term safety of budesonide nasal aerosol – a 5.5 year follow up study. Clin Allergy 18:253–259

    Article  PubMed  CAS  Google Scholar 

  39. Rachelefsky GS, Chervinsky P, Meltzer EO et al (1998) An evaluation of the effects of beclomethasone diproprionate on long-term growth in children. J Allergy Clin Immunol 101:236

    Article  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor weist auf folgende Beziehungen hin: Der korrespondierende Autor erhielt Unterstützung für wissenschaftliche Forschungsprojekte/Vortragshonorare/Beratung von folgenden Firmen: ALK-Abello, Dänemark; Allergopharma, Deutschland; Artu Biologicals, Niederlande; Bencard, Großbritannien; Bionorica, Deutschland; Boehringer Ingelheim, Deutschland; Curalogic, Dänemark; Cytos, Schweiz; GSK, Großbritannien; HAL, Niederlande; Hartington, Spanien; Leti, Spanien; Lofarma, Italien; MSD, USA; Novartis, Schweiz; Optima, Deutschland; Phadia/Thermofisher, Schweden; Roxall, Deutschland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Klimek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Bernus, L., Högger, P., Pfaar, O. et al. Wirkmechanismen nasaler Glukokortikosteroide in der Therapie der allergischen Rhinitis. HNO 60, 700–706 (2012). https://doi.org/10.1007/s00106-012-2484-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00106-012-2484-3

Schlüsselwörter

Keywords

Navigation