Skip to main content
Log in

Wirkmechanismen nasaler Glukokortikosteroide in der Therapie der allergischen Rhinitis

Teil 1: Pathophysiologie, molekulare Grundlagen

Mechanism of action of nasal glucocorticosteroids in the treatment of allergic rhinitis

Part 1: Pathophysiology, molecular basis

  • Originalien
  • Published:
HNO Aims and scope Submit manuscript

Zusammenfassung

Die allergische Rhinitis ist eine häufige Atemwegserkrankung, die durch eine Hyperreaktivität der Schleimhaut, erhöhte Sekretion und Entzündungsprozesse sowie einen hiermit einhergehenden Gewebsumbau („remodelling“) charakterisiert ist. Die Gabe antiallergischer und antiinflammatorischer Medikamente wie nasaler Glukokortikosteroide (nGCS) stellt hierbei die wichtigste Therapiemaßnahme dar.

nGCS üben über mindestens zwei verschiedene Mechanismen einen antiinflammatorischen Effekt aus: zum einen durch Transaktivierung, zum anderen durch Transrepression. Darüber hinaus wird GCS eine regulatorische Funktion zugeschrieben, indem sie regulatorische Zytokine und Forkhead Box P3 (Foxp3) induzieren. Foxp3 ist ein wichtiger Transkriptionsfaktor regulatorischer T-Zellen, der es ermöglicht, andere CD4 +- Zellen in ihrer Effektorfunktion und Proliferation zu inhibieren.

Das Wissen über die Kenntnisse der molekularen Mechanismen erlaubt heute, die antiinflammatorischen Wirkung von nGCS gezielter und frühzeitiger zu nutzen.

Abstract

Allergic rhinitis (AR) is a common airway disease characterized by mucosal swelling leading to congestion, mucosal hyperreactivity and increased secretions. Inflammatory processes in the mucosa are responsible for most symptoms and are characterized by mucosal remodeling after longer time periods.

The early phase response, which is characterized by sneezing, rhinorrhea and nasal congestion, is the response of the sensory nerve terminals and blood vessels in the nasal mucosa to chemical mediators such as histamine, prostaglandins and leukotrienes. Nasal exposure to allergens leads to infiltration of inflammatory cells, such as activated eosinophils and T helper type 2 (TH2) cells, into the nasal mucosa by chemoattractant factors such as cytokines including interleukin 5 (IL-5), chemical mediators including cysLTs and chemokines including eotaxin. Edema of the nasal mucosa develops as a secondary reaction with inflammatory cells. This inflammation, referred to as the late-phase response, develops 6–10 h after allergen challenge and causes prolonged nasal congestion. In addition, a neurogenic mechanism is activated after liberation of substance P and others. Therefore, allergic rhinitis is a complex immunogenic disease that also activates mechanisms of the immune system in general. Antiallergic and antiinflammatory medications such as nasal glucocorticosteroids (nGCS) are thought to be the most effective treatment for controlling the symptoms and inflammatory mechanisms of AR.

The antiinflammatory action of nGCS depends on at least two different mechanisms: transactivation and transrepression. Moreover, they regulate immune functions by inducing regulatory cytokines and forkhead box P3 (Foxp3). Foxp3 is of upmost importance as a transcription factor of regulatory t-cells, allowing the inhibition of effector function and proliferation of other CD4 + cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Abbreviations

APZ:

antigenpräsentierende Zellen

AP-1:

„activator protein-1“

AR:

allergische Rhinitis

BALF:

bronchoalveoläre Lavageflüssigkeit

bFGF:

“basic fibroblast growth factor”

cysLT:

Cysteinyl-Leukotriene

CD:

“cluster of differentiation”

cDNA:

„complementary“ Desoxyribonukleinsäure

DC:

dendritische Zelle

ECP:

eosinophiles kationisches Protein

EIA:

Enzymimmunoassay

FcεRI:

hochaffine IgE-Rezeptoren

Foxp3:

Forkhead Box P3

GILZ:

“glucosteroid-induced-leucine zipper”

GM-CSF:

“granulocyte macrophage colony-stimulating factor”

GR:

Glukokortikoidrezeptor

H1-Rezeptor:

Histaminrezeptor vom Typ 1

ICAM-1:

interzelluläres Adhäsionsmolekül 1

IFN:

Interferon

IgE:

Immunglobulin E

IL:

Interleukin

LT:

Leukotriene

MHC:

“major histocompatibility complex”

mRNA:

Messenger-Ribonukleinsäure

NFκB:

“nuclear factor kappa B”

nGCS:

nasale Glukokortikosteroide

NGF:

“nerval growth factor”

NO:

Stickstoffmonoxid

PAF:

plättchenaktivierender Faktor

PG:

Prostaglandin

TARC:

“thymus and activation regulated chemokine”

TGF:

“transforming growth factor”

TH1 :

T-Helferzellen vom Typ 1

TH2 :

T-Helferzellen vom Typ 2

TLR-Rezeptor:

Toll-like-Rezeptor

TNF-α:

Tumornekrosefaktor-α

TOVAs:

“test of variables of attention”

TXA2:

Thromboxan A2

Treg-Zellen:

T-regulatorische Zellen (Lymphozyten)

VCAM:

“vascular cell adhesion molecule”

VEGF:

“vascular endothelial growth factor”

Literatur

  1. Brozek JL, Bousquet J, Baena-Cagnani CE et al (2010) Allergic Rhinitis and its Impact on Asthma (ARIA) guidelines: 2010 revision. J Allergy Clin Immunol 126(3):466–476

    Article  PubMed  Google Scholar 

  2. Ring J, Bachert C, Bauer CP, Czech W (2010) Weißbuch: Allergie in Deutschland. Urban & Vogel, München

  3. Bousquet J, Jacquot W, Vignola M et al (2004) Allergic rhinitis: a disease remodeling the upper airways? J Allergy Clin Immunol 113:43–49

    Article  PubMed  CAS  Google Scholar 

  4. Kimmerle R, Rolla AR (1985) Iatrogenic Cushing’s syndrome due to dexamethasone nasal drops. Am J Med 79:535–537

    Article  PubMed  CAS  Google Scholar 

  5. Masuyama K (2000) Merits and demerits of steroid – different whole body and limited part administering. J Jpn Immunol Allergol Otolaryngol 18:6–11

    Google Scholar 

  6. Derendorf H, Meltzer EO (2008) Molecular and clinical pharmacology of intranasal corticosteroids: clinical and therapeutic implications. Allergy 63:1292–1300

    Article  PubMed  CAS  Google Scholar 

  7. Wan H, Winton HL, Soeller C et al (1999) Der p 1 facilitates transepithelial allergen delivery by disruption of tight junctions. J Clin Invest 104:123–133

    Article  PubMed  CAS  Google Scholar 

  8. Hottori H, Okano M, Yoshino T et al (2001) Expression of costimulatory CD80/CD86-CD28/CD152 molecules in nasal mucosa of patients with perennial rhinitis. Clin Exp Allergy 31:1242–1249

    Article  Google Scholar 

  9. Klimek L, Pfaar O (2011) Allergische Rhinitis: Immunologische und neurogene Mechanismen. HNO 59:1191–1197

    Article  PubMed  CAS  Google Scholar 

  10. Kleinjan A, Willart M, Rijt LS van et al (2006) An essential role for dendritic cells in human and experimental allergic rhinitis. J Allergy Clin Immunol 118:1117–1125

    Article  PubMed  CAS  Google Scholar 

  11. Akdis M, Verhagen A, Taylor F et al (2004) Immune responses in healthy and allergic individuals are characterized by a fine balance between allergen-specific T regulatory 1 and T helper 2 cells. J Exp Med 199:1567–1575

    Article  PubMed  CAS  Google Scholar 

  12. Sokol CL, Barton GM, Farr AG, Medzhitov R (2008) A mechanism for the initiation of allergen-induced T helper type 2 responses. Nat Immunol 9:310–318

    Article  PubMed  CAS  Google Scholar 

  13. Okano M, Yoshino T, Nishizaki K et al (2000) Interleukin-4 independent production of TH2 cytokines by nasal lymphocytes and nasal eosinophilia in murine allergic rhinitis. Allergy 55:723–731

    Article  PubMed  CAS  Google Scholar 

  14. Hattori H, Okano M, Kariya S et al (2006) Signals through CD40 play a critical role in the pathophysiology of Schistosoma mansoni egg antigen-induced allergic rhinitis in mice. Am J Rhinol 20:165–169

    PubMed  Google Scholar 

  15. Flynn AN, Itani OM, Moninger TO, Welsh MJ (2009) Acute regulation of tight junction ion selectivity in human airway epithelia. Proc Natl Acad Sci U S A 106:3591–3596

    Article  PubMed  CAS  Google Scholar 

  16. Takano K, Kojima T, Go M et al (2005) and CD11c-positive dendritic cells penetrate beyond well-developed epithelial tight junctions in human nasal mucosa of allergic rhinitis. J Histochem Cytochem 53:611–619

    Article  PubMed  CAS  Google Scholar 

  17. Gelfand EW (2004) Inflammatory mediators in allergic rhinitis. J Allergy Clin Immunol 114:135–138

    Article  Google Scholar 

  18. Nomiya R, Okano M, Fujiwara T et al (2008) CR TH2 plays an essential role in the pathophysiology of Cry j 1-induced pollinosis in mice. J Immunol 180:5680–5688

    PubMed  CAS  Google Scholar 

  19. Choi GS, Pard HJ, Hur GY et al (2009) Vascular endothelial growth factor in allergen-induced nasal inflammation. Clin Exp Allergy 39:655–661

    Article  PubMed  CAS  Google Scholar 

  20. Durham SR, Ying S, Varney VA et al (1992) Cytokine messenger RNA expression for IL-4, IL-4, IL-5, and granulocyte/macrophage colony stimulating factor in the nasal mucosa after local allergen provocation: relationship to tissue eosinophilia. J Immunol 148:2390–2394

    PubMed  CAS  Google Scholar 

  21. Hogan SP, Rosenberg HF, Moqbel R et al (2008) Eosinophil: biological properties and role in health and disease. Clin Exp Allergy 38:709–750

    Article  PubMed  CAS  Google Scholar 

  22. Takahashi N, Yamada T, Narita N, Fujieda S (2006) Double-stranded RNA induces production of RANTES and IL-8 by human nasal fibroblasts. Clin Immunol 118:51–58

    Article  PubMed  CAS  Google Scholar 

  23. Marcucci F, Sensi LG, Migali E, Coniglio G (2001) Eosinophilic cationic protein and specific IgE in serum and nasal mucosa of patients with grass-pollen-allergic rhinitis and asthma. Allergy 56:231–236

    Article  PubMed  CAS  Google Scholar 

  24. Iwasaki M, Saito K, Tekemura M et al (2003) TNF-alpha contributes to the development of allergic rhinitis in mice. J Allergy Clin Immunol 112:134–140

    Article  PubMed  CAS  Google Scholar 

  25. Bousquet J, Vignola AM, Campbell AM, Michel FB (1996) Pathophysiology of allergic rhinitis. Int Arch Allergy Immunol 110:207–218

    Article  PubMed  CAS  Google Scholar 

  26. Fujita M, Yonetomi Y, Shimouchi K et al (1999) Involvement of cysteinyl leukotriens in biphasic increase of nasal airway resistance of antigen-induced rhinitis in guinea pigs. Eur J Pharmacol 369:349–356

    Article  PubMed  CAS  Google Scholar 

  27. Heppt W, Dinh QT, Cryer A et al (2004) Phenotypic alteration of neuropeptide-containing nerve fibers in seasonal intermittent allergic rhinitis. Clin Exp Allergy 34:1105–1110

    Article  PubMed  CAS  Google Scholar 

  28. Imanura T, Kambara T (1992) Substance P as a potent stimulator of sneeze responses in experimental allergic rhinitis of guinea pigs. Agents Actions 37:245–249

    Article  Google Scholar 

  29. Nabe T, Tsuzuike N, Ohtani Y et al (2008) Important roles of tachykinines in the development of allergic nasal hyperresponsiveness in guinea-pigs. Clin Exp Allergy 39:138–146

    Article  PubMed  Google Scholar 

  30. Baroody FM, Ford S, Lichtenstein LM et al (1994) Physiologic responses and histamine release after nasal antigen challenge. Effect of atropine. Am J Respir Crit Care Med 149:1457–1465

    PubMed  CAS  Google Scholar 

  31. Sheaham P, Walsh RM, Walsh MA, Costello RW (2005) Induction of nasal hyper-responsiveness by allergen challenge in allergic rhinitis: the role of afferent and efferent nerves. Clin Exp Allergy 35:45–51

    Article  Google Scholar 

  32. Bresciani M, Laliberte F, Laliberte MF et al (2009) Nerve growth factor localization in the nasal mucosa of patients with persistent allergic rhinitis. Allergy 64:112–117

    Article  PubMed  CAS  Google Scholar 

  33. Konno A, Terada N, Okamoto Y, Togawa K (1987) The role of chemical mediators and mucosal hyperreactivity in nasal in nasal hypersecretion in nasal allergy. J Allergy Clin Immunol 79:620–627

    Article  PubMed  CAS  Google Scholar 

  34. Struben VM, Wieringa MH, Feenstra L, Jongste JC de (2006) Nasal nitric oxide and nasal allergy. Allergy 61:665–670

    Article  PubMed  CAS  Google Scholar 

  35. Sikoff PE, Roth Y, McClean P et al (1999) Nasal nitric oxide does not control basal nasal patency or acute congestion following allergen challenge in allergic rhinitis. Ann Otol Rhinol Laryngol 108:368–372

    Google Scholar 

  36. Tanaka Y, Mizutani N, Fujii M et al (2006) Different mechanisms between thromboxane A2- and leukotriene D4-induced nasal blockage in guinea-pigs. Prostaglandins Other Lipid Mediat 80:144–154

    Article  PubMed  CAS  Google Scholar 

  37. Mangelsdorf DJ, Thummel C, Beato M et al (1995) The nuclear receptor superfamily: the second decade. Cell 83:835–839

    Article  PubMed  CAS  Google Scholar 

  38. Pratt WB, Morishima Y, Murphy M, Harrel M (2006) Chaperoning of glucocorticoid receptors. Handb Exp Pharmacol 172:111–138

    Article  PubMed  CAS  Google Scholar 

  39. Grad I, Picard D (2007) The glucocorticoid responses are shaped by molecular chaperones. Mol Cell Endocrinol 274:2–12

    Article  Google Scholar 

  40. Oakley RH, Jewell CM, Yudt MR et al (1999) The dominant negative activity of the human glucocorticoid receptor beta isoform. Specificity and mechanisms of action. J Biol Chem 274:27857–27866

    Article  PubMed  CAS  Google Scholar 

  41. Fakhri S, Tulic M, Christodoulopoulos P et al (2004) Microbial superantigens induce glucocorticoid receptor β and steroid resistance in a nasal explants model. Laryngoscope 114:887–892

    Article  PubMed  Google Scholar 

  42. Barnes PJ (2006) Corticosteroid effects on cell signaling. Eur Respir J 27:413–426

    Article  PubMed  CAS  Google Scholar 

  43. Graversen JH, Madsen M, Moestrup SK (2002) CD163: a signal receptor scavenging haptoglobin–hemoglobin complex from plasma. Int J Biochem Cell Biol 34:309–314

    Article  PubMed  CAS  Google Scholar 

  44. Pascual G, Glass CK (2006) Nuclear receptors versus inflammation: mechanisms of transrepression. Trends Endocrinol Metab 17:321–327

    Article  PubMed  CAS  Google Scholar 

  45. Saito M, Takayanagi R, Goto K et al (2002) The presence of both the amino- and carboxyl-terminal domains in the AR is essential for the completion of a transcriptionally active form with coactivators and intranuclear compartmentalization common to the steroid hormone receptors: a three-dimensional imaging study. Mol Endocrinol 16:694–706

    Article  Google Scholar 

  46. Smith SJ, Piliponsky AM, Rosenhead F et al (2002) Dexamethasone inhibits maturation, cytokine production and Fc epsilon RI expression of human cord blood-derived mast cells. Clin Exp Allergy 32:906–913

    Article  PubMed  CAS  Google Scholar 

  47. Crocker IC, Zhou CY, Bewta AK et al (1997) Glucocorticosteroids inhibit leukotriene production. Ann Allergy Asthma Immunol 78:497–505

    Article  PubMed  CAS  Google Scholar 

  48. Stellato C, Atsuta J, Bickel CA, Schleimer RP (1999) An in vitro comparison of commonly used topical glucocotricoid preparations. J Allergy Clin Immunol 104:623–629

    Article  PubMed  CAS  Google Scholar 

  49. Ciprandi G, Tosca MA, Passalacqua G, Canonica GW (2001) Intranasal mometasone furoate reduces late-phase inflammation after allergen challenge. Ann Allergy Asthma Immunol 86:433–438

    Article  PubMed  CAS  Google Scholar 

  50. Meagher LC, Cousin JM, Seckl JR, Haslett C (1996) Opposing effects of glucocorticoids on the rate of apoptosis in neutrophilic and eosinophilic granulocytes. J Immunol 156:4422–4428

    PubMed  CAS  Google Scholar 

  51. Till SJ, Jacobson MR, O’Brien F et al (2001) Recruitment of CD1a + Langerhans cells to the nasal mucosa in seasonal allergic rhinitis and effects of topical corticosteroid therapy. Allergy 56:126–131

    Article  PubMed  CAS  Google Scholar 

  52. Erin EM, Zacharasiewicz AS, Nicholson GC et al (2005) Topical corticosteroid inhibits interleukin-4, -5, and −13 in nasal secretions following allergen challenge. Clin Exp Allergy 35:1608–1614

    Article  PubMed  CAS  Google Scholar 

  53. Malmhall C, Bossios A, Pullertis T, Lotvall J (2007) Effects of pollen and nasal glucocorticoids on FOXP3 +, GATA-3 + and T-bet + cells in allergic rhinitis. Allergy 62:1007–1013

    Article  PubMed  CAS  Google Scholar 

  54. Durham SR, Gould HJ, Thiense CP et al (1997) Expression of epsilon germ-line transcripts and mRNA for the epsilon heavy chain of IgE in nasal B cells and the effects of topical corticosteroid. Eur J Immunol 27:2599–2906

    Article  Google Scholar 

  55. Mullol J, Roca-Ferrer J, Xaubet A et al (2000) Inhibition of GM-CSF secretion by topical corticosteroids and nedocromil sodium. A comparison study using nasal polyp epithelial cells. Respir Med 94:428–431

    Article  PubMed  CAS  Google Scholar 

  56. Silvestri M, Sabatini F, Scarso L et al (2002) Fluticasone propionate downregulates nasal fibroblast functions involved in airway inflammation and remodeling. Int Arch Allergy Immunol 128:51–58

    Article  PubMed  CAS  Google Scholar 

  57. Namba M, Asano K, Kanai K et al (2004) Suppression of matrix metalloproteinase production from nasal fibroblasts by fluticasone propionate in vitro. Acta Otolaryngol 124:964–969

    Article  PubMed  CAS  Google Scholar 

  58. Uchida J, Kanai K, Asano K et al (2004) Influence of fluticasone propionate on the production of vascular endothelial growth factor and basic fibroblast growth factor from nasal fibroblasts in vitro. In Vivo 18:767–770

    PubMed  CAS  Google Scholar 

  59. Yamamoto Y, Ikeda K, Watanabe M et al (1998) Expression of adhesion molecules in cultured human nasal mucosal microvascular endothelial cells activated by interleukin-1 beta or tumor necrosis factor-alpha: effects of dexametasone. Int Arch Allergy Immunol 117:68–77

    Article  PubMed  CAS  Google Scholar 

  60. Hamilos DL, Thawley SE, Kramper MA et al (1999) Effect of intranasal fluticasone on cellular infiltration, endothelial adhesion molecule expression, and proinflamatory cytokine mRNA in nasal polyp disease. J Allergy Clin Immunol 103:79–87

    Article  PubMed  CAS  Google Scholar 

  61. Tingsgaard PK, Bock T, Larsen PL, Tos M (1999) Topical budesonide treatment reduces endothelial expression of intracellular adhesion molecules (vascular cell adhesion molecule-1 and P-selectin) and eosinophil infiltration in nasal polyps. Acta Otolaryngol 119:362–368

    Article  PubMed  CAS  Google Scholar 

  62. Greiff L, Andersson M, Svensson C et al (1994) Glucocorticoids may not inhibit plasma exudation by direct vascular antipermeability effects in human airways. Eur Respir J 7:1120–1124

    PubMed  CAS  Google Scholar 

  63. Shevach EM, DiPaolo RA, Andersson J et al (2006) The lifestyle of naturally occurring CD4 + CD25 + Foxp3 + regulatory T cells. Immunol Rev 212:60–73

    Article  PubMed  CAS  Google Scholar 

  64. Sakaguchi S, Yamaguchi T, Nomura T, Ono M (2008) Regulatory T cells and immune tolerance. Cell 133:775–787

    Article  PubMed  CAS  Google Scholar 

  65. Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science 299:1057–1061

    Article  PubMed  CAS  Google Scholar 

  66. Ryanna K, Stratigou V, Safinia N, Hawrylowicz C (2009) Regulatory T cells in bronchial asthma. Allergy 64:335–347

    Article  PubMed  CAS  Google Scholar 

  67. Grindebacke H, Wing K, Andersson AC et al (2004) Defective suppression of TH2 cytokines by CD4CD25 regulatory T cells in birch allergics during birch pollen season. Clin Exp Allergy 34:1364–1372

    Article  PubMed  CAS  Google Scholar 

  68. Jutel M, Akdis M, Budak F et al (2003) IL-10 and TGF-beta cooperate in the regulatory T cell responses to mucosal allergens in normal immunity and specific immunotherapy. Eur J Immunol 33:1205–1214

    Article  PubMed  CAS  Google Scholar 

  69. Klimek L, Schendzielorz P, Högger P (2010) Nasale Glukokortikosteroid-Therapie: Ein Update. Allergologie 34(6):307–318

    Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor weist auf folgende Beziehungen hin: Der korrespondierende Autor erhielt Unterstützung für wissenschaftliche Forschungsprojekte/Vortragshonorare/Beratung von folgenden Firmen: ALK-Abello, Dänemark; Allergopharma, Deutschland; Artu Biologicals, Niederlande; Bencard, Großbritannien; Bionorica, Deutschland; Boehringer Ingelheim, Deutschland; Curalogic, Dänemark; Cytos, Schweiz; GSK, Großbritannien; HAL, Niederlande; Hartington, Spanien; Leti, Spanien; Lofarma, Italien; MSD, USA; Novartis, Schweiz; Optima, Deutschland; Phadia/Thermofisher, Schweden; Roxall, Deutschland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Klimek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klimek, L., Högger, P. & Pfaar, O. Wirkmechanismen nasaler Glukokortikosteroide in der Therapie der allergischen Rhinitis. HNO 60, 611–617 (2012). https://doi.org/10.1007/s00106-012-2483-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00106-012-2483-4

Schlüsselwörter

Keywords

Navigation