Skip to main content
Log in

Höchstauflösende optische Mikroskopie am Corti-Organ

Feinstrukturaufklärung an der afferenten Synapse innerer Haarzellen mittels 4Pi- und STED-Technik

Super-resolution optical microscopy of the organ of Corti

Investigations on the fine structure of the inner hair cell afferent synapse by the 4Pi and STED techniques

  • Originalien
  • Published:
HNO Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Innere Haarzellen vermitteln die Kodierung von Schallschwingungen in Nervenimpulse. Sie werden von den Spiralganglienneuronen, die den Hörnerv bilden, afferent innerviert. Schaltstelle ist die spezialisierte afferente Haarzellsynapse, die zu den Bändersynapsen zählt. Struktur und Funktion dieser Synapsen bestimmen wesentlich die Eigenschaften der Signalverarbeitung. In dieser Studie haben wir mit konventionellen und neuen höchstauflösenden optischen Methoden die synaptische Organisation an der inneren Haarzelle der Maus untersucht.

Material und Methoden

Funktionell wichtige Proteine der afferenten Synapse innerer Haarzellen wurden mit immunhistochemischen Methoden selektiv markiert und dann mit konventioneller konfokaler Mikroskopie und den modernen Verfahren 4Pi und STED untersucht.

Ergebnisse

Die Synapsendichte und damit die afferente Innervationsdichte konnte über die gesamte tonotope Achse kartiert werden. Dabei fand sich, dass die inneren Haarzellen in den Bereichen des empfindlichsten Hörens im Vergleich mit den Randbereichen über etwa die doppelte Anzahl an innervierenden Fasern verfügen. Die höchstauflösenden Verfahren 4Pi und STED wurden erstmals verwendet, um die Feinstruktur dieser Synapsen mit Auflösungen jenseits der konventionellen Lichtmikroskopie zu untersuchen. Mit dem 4Pi-Verfahren sind Auflösungen um 100 nm in z-Richtung möglich. Das STED-Verfahren liefert Auflösungen zwischen 150 und 30 nm, abhängig von der Leistung der verwendeten Laser. Synapsen an verschiedenen tonotopen Positionen der Cochlea zeigen auf diesem Auflösungsniveau keine relevanten strukturellen Unterschiede.

Zusammenfassung

4Pi- und STED-Mikroskopie sind in der Lage, die Struktur afferenter Synapsen des Corti-Organs mit bislang nicht erreichter Auflösung darzustellen. Die mit diesen Techniken erzielten Aufnahmen tragen zum Verständnis der Mechanismen der Schallkodierung im Innenohr bei.

Abstract

Background

Inner hair cells encode sound into action potentials in the auditory nerve. Spiral ganglion neurons form the afferent innervation of inner hair cells via the hair cell synapse. The structure and function of this ribbon-type synapse is considered to have a major impact on the sound encoding process itself. In this study we have used conventional confocal microscopy as well as super-resolution techniques to investigate the synaptic organization in the inner hair cells of mice.

Material and methods

Functionally relevant proteins of the afferent inner hair cell synapse were selectively marked using immunohistochemical methods and investigated with conventional confocal and super-resolution 4Pi- and stimulated emission depletion (STED) techniques.

Results

Synapse and innervation density was mapped over the entire tonotopic axis. We found inner hair cells in the region of best hearing to have about twice the number of afferent fibres compared to the apex or base of the cochlea. For the first time 4Pi and STED microscopic techniques were employed to resolve the fine structure of these synapses beyond the resolution of conventional light microscopy. With 4Pi a resolution of approximately 100 nm in the z-axis direction is feasible. In practice STED delivers an effective resolution between 150 and 30 nm, depending on the power of the lasers employed. Synapses at different tonotopic positions of the cochlea exhibit no relevant structural differences at this level of resolution.

Summary

The 4Pi and STED microscopic techniques are capable of showing the structure of afferent synapses in the organ of Corti with unsurpassed resolution. These images contribute to our understanding of sound-encoding mechanisms in the inner ear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literature

  1. Abbe E (1873) Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch Mikroskop Anat 9:413–468

    Article  Google Scholar 

  2. Brandt A, Striessnig J, Moser T (2003) CaV1.3 channels are essential for development and presynaptic activity of cochlear inner hair cells. J Neurosci 23:10832–10840

    PubMed  CAS  Google Scholar 

  3. Egner A, Hell SW (2005) Fluorescence microscopy with super-resolved optical sections. Trends Cell Biol 15:207–215

    Article  PubMed  CAS  Google Scholar 

  4. Egner A, Jakobs S, Hell S (2002) Fast 100-nm resolution three-dimensional microscope reveals structural plasticity of mitochondria in live yeast. Proc Natl Acad Sci U S A 99:3370–3375

    Article  PubMed  CAS  Google Scholar 

  5. Fuchs PA (2005) Time and intensity coding at the hair cell’s ribbon synapse. J Physiol 566:7–12

    Article  PubMed  CAS  Google Scholar 

  6. Fuchs PA, Glowatzki E, Moser T (2003) The afferent synapse of cochlear hair cells. Curr Opin Neurobiol 13:452–458

    Article  PubMed  CAS  Google Scholar 

  7. Harke B, Keller J, Ullal C et al (2008) Resolution scaling in STED microscopy. Opt Express 16:4154–4162

    Article  PubMed  Google Scholar 

  8. Hell SW (2007) Far-field optical nanoscopy. Science 316:1153–1158

    Article  PubMed  CAS  Google Scholar 

  9. Hell SW, Stelzer E (1992) Fundamental improvement of resolution with a 4Pi-confocal fluorescence microscope using two-photon excitation. Opt Commun 93:277–282

    Article  Google Scholar 

  10. Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated-emission – stimulated-emission-depletion fluorescence microscopy. Opt Lett 19:780–782

    Article  PubMed  CAS  Google Scholar 

  11. Khimich D, Nouvian R, Pujol R et al (2005) Hair cell synaptic ribbons are essential for synchronous auditory signalling. Nature 434:889–894

    Article  PubMed  CAS  Google Scholar 

  12. Kiang NY, Rho JM, Northrop CC et al (1982) Hair-cell innervation by spiral ganglion cells in adult cats. Science 217:175–177

    Article  PubMed  CAS  Google Scholar 

  13. Kittel RJ, Wichmann C, Rasse TM et al (2006) Bruchpilot promotes active zone assembly, Ca2 + channel clustering, and vesicle release. Science 312:1051–1054

    Article  PubMed  CAS  Google Scholar 

  14. Kujawa SG, Liberman MC (2009) Adding insult to injury: cochlear nerve degeneration after „temporary“ noise-induced hearing loss. J Neurosci 29:14077–14085

    Article  PubMed  CAS  Google Scholar 

  15. Liberman MC (1980) Morphological differences among radial afferent fibers in the cat cochlea: an electron-microscopic study of serial sections. Hear Res 3:45–63

    Article  PubMed  CAS  Google Scholar 

  16. Liberman MC, Dodds LW, Pierce S (1990) Afferent and efferent innervation of the cat cochlea: quantitative analysis with light and electron microscopy. J Comp Neurol 301:443–460

    Article  PubMed  CAS  Google Scholar 

  17. Matsubara A, Laake JH, Davanger S et al (1996) Organization of AMPA receptor subunits at a glutamate synapse: a quantitative immunogold analysis of hair cell synapses in the rat organ of Corti. J Neurosci 16:4457–4467

    PubMed  CAS  Google Scholar 

  18. Meyer AC, Frank T, Khimich D et al (2009) Tuning of synapse number, structure and function in the cochlea. Nat Neurosci 12:444–453

    Article  PubMed  CAS  Google Scholar 

  19. Meyer AC, Moser T (2010) Structure and function of cochlear afferent innervation. Curr Opin Otolaryngol Head Neck Surg 18:441–446

    Article  PubMed  Google Scholar 

  20. Moser T, Beutner D (2000) Kinetics of exocytosis and endocytosis at the cochlear inner hair cell afferent synapse of the mouse. Proc Natl Acad Sci U S A 97:883–888

    Article  PubMed  CAS  Google Scholar 

  21. Müller M, Hünerbein K von, Hoidis S et al (2005) A physiological place-frequency map of the cochlea in the CBA/J mouse. Hear Res 202:63–73

    Article  PubMed  Google Scholar 

  22. Platzer J, Engel J, Schrott-Fischer A et al (2000) Congenital deafness and sinoatrial node dysfunction in mice lacking class D L-type Ca2 + channels. Cell 102:89–97

    Article  PubMed  CAS  Google Scholar 

  23. Schmitz F, Konigstorfer A, Sudhof T (2000) RIBEYE, a component of synaptic ribbons: a protein’s journey through evolution provides insight into synaptic ribbon function. Neuron 28:857–872

    Article  PubMed  CAS  Google Scholar 

  24. Spoendlin H (1985) Anatomy of cochlear innervation. Am J Otolaryngol 6:453–467

    Article  PubMed  CAS  Google Scholar 

  25. Spoendlin H (1969) Innervation patterns in the organ of corti of the cat. Acta Otolaryngol 67:239–254

    Article  PubMed  CAS  Google Scholar 

  26. Staudt T, Lang MC, Medda R et al (2007) 2,2’-thiodiethanol: a new water soluble mounting medium for high resolution optical microscopy. Microsc Res Tech 70:1–9

    Article  PubMed  CAS  Google Scholar 

  27. Taberner AM, Liberman MC (2005) Response properties of single auditory nerve fibers in the mouse. J Neurophysiol 93:557–569

    Article  PubMed  Google Scholar 

  28. Willig K, Rizzoli S, Westphal V et al (2006) STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature 440:935–939

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.C. Meyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyer, A., Khimich, D., Egner, A. et al. Höchstauflösende optische Mikroskopie am Corti-Organ. HNO 60, 707–714 (2012). https://doi.org/10.1007/s00106-011-2457-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00106-011-2457-y

Schlüsselwörter

Keywords

Navigation