Skip to main content
Log in

Volumenänderungen der grauen Hirnsubstanz bei Anosmikern

Erkenntnisse durch voxelbasierte Morphometrie

Volume alterations in the gray matter of anosmic subjects

Lessons we can learn from voxel-based morphometry

  • Leitthema
  • Published:
HNO Aims and scope Submit manuscript

Zusammenfassung

Veränderungen des zentralen Nervensystems nach einem Verlust des Riechvermögens wurden bisher vor allem für den Bulbus olfactorius (OB) beschrieben. Wir stellen eine Studie zu voxelbasierter Morphometrie (VBM) vor, die Hirnveränderungen bei Patienten mit Anosmie in dem OB übergeordneten Arealen darstellt. Datensätze von 17 Patienten mit Anosmie sowie von 17 normosmischen Kontrollpersonen wurden auf einem 3-T-Magnetresonanztomographen aufgezeichnet. Die Datenverarbeitung und Auswertung erfolgte mit der SPM5-Software (Wellcome Department of Imaging Neuroscience Group, London, UK) und der hierin implementierten VBM5-Toolbox. Die Patientengruppe zeigte eine signifikante Volumenabnahme der grauen Hirnsubstanz sowohl im primären olfaktorischen Kortex als auch in sekundären olfaktorischen Arealen (Insula, orbitofrontaler Kortex, Cingulum, Hippokampus). Auch wurden größere Volumenabnahmen im Nucleus accumbens mit dem angrenzenden Gyrus subcallosus sowie im dorsolateralen präfrontalen Kortex gefunden. Eine längere Erkrankungsdauer war mit ausgeprägteren Gehirnveränderungen verbunden. VBM ist somit geeignet, Hirnveränderungen bei Patienten mit Riechstörungen darzustellen.

Abstract

Alterations in the central nervous system in patients with a loss of sense of smell are well documented for the olfactory bulb (OB). Here we present a voxel-based morphometry (VBM) study on cerebral alterations in the gray matter of patients with anosmia above the OB. 3-Tesla MRI datasets were obtained from 17 patients with anosmia as well as from 17 normosmic controls. Data processing and evaluation was performed using the SPM5 software package (Wellcome Department of Imaging Neuroscience Group, London, UK) and the implemented VBM5 toolbox. Patients with anosmia showed a significant volume decrease in the gray matter in the primary olfactory cortex as well as in secondary olfactory areas (insular cortex, orbitofrontal cortex, cingulate cortex and hippocampus). Furthermore, volume decreases in areas like the nucleus accumbens with adjacent subcallosal gyrus and the dorsolateral prefrontal cortex were found. Longer disease duration was associated with more profound alterations in the gray matter. VBM is appropriate to document brain alterations in patients with olfactory disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Alexander GE, Delong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9:357–381

    Article  PubMed  CAS  Google Scholar 

  2. Ashburner J, Friston KJ (2000) Voxel-based morphometry – the methods. Neuroimage 11:805–821

    Article  PubMed  CAS  Google Scholar 

  3. Baldo BA, Kelley AE (2007) Discrete neurochemical coding of distinguishable motivational processes: insights from nucleus accumbens control of feeding. Psychopharmacology (Berl) 191:439–459

    Google Scholar 

  4. Bitter T, Bruderle J, Gudziol H et al (2010) Gray and white matter reduction in hyposmic subjects – A voxel-based morphometry study. Brain Res 1347:42–47

    Article  PubMed  CAS  Google Scholar 

  5. Bitter T, Gudziol H, Burmeister HP et al (2010) Anosmia leads to a loss of gray matter in cortical brain areas. Chem Senses 35:407–415

    Article  PubMed  Google Scholar 

  6. Bitter T, Josiger M, Mentzel HJ et al (2011) Detection of olfactory areas in functional MRI – how many repetitions are necessary? Laryngorhinootologie. DOI:10.1055/s-0030-1267216

  7. Bitter T, Siegert F, Gudziol H et al (2011) Gray matter alterations in parosmia. Neuroscience. DOI:10.1016/j.neuroscience.2011.01.016

  8. Burmeister HP, Baltzer PAT, Möslein C et al (2011) Visual grading characteristics (VGC) analysis of diagnostic image quality for high resolution 3 tesla MRI volumetry of the olfactory bulb. Acad Radiol: in press

    Google Scholar 

  9. Cerf-Ducastel B, Murphy C (2006) Neural substrates of cross-modal olfactory recognition memory: an fMRI study. Neuroimage 31:386–396

    Article  PubMed  Google Scholar 

  10. Cummings DM, Henning HE, Brunjes PC (1997) Olfactory bulb recovery after early sensory deprivation. J Neurosci 17:7433–7440

    PubMed  CAS  Google Scholar 

  11. Curtis MA, Kam M, Nannmark U et al (2007) Human neuroblasts migrate to the olfactory bulb via a lateral ventricular extension. Science 315:1243–1249

    Article  PubMed  CAS  Google Scholar 

  12. Dade LA, Zatorre RJ, Evans AC et al (2001) Working memory in another dimension: functional imaging of human olfactory working memory. Neuroimage 14:650–660

    Article  PubMed  CAS  Google Scholar 

  13. Frasnelli J, Lundstrom JN, Boyle JA et al (2010) Neuroanatomical correlates of olfactory performance. Exp Brain Res 201:1–11

    Article  PubMed  Google Scholar 

  14. Gottfried JA (2006) Smell: central nervous processing. Adv Otorhinolaryngol 63:44–69

    PubMed  Google Scholar 

  15. Gottfried JA, Deichmann R, Winston JS et al (2002) Functional heterogeneity in human olfactory cortex: an event-related functional magnetic resonance imaging study. J Neurosci 22:10819–10828

    PubMed  CAS  Google Scholar 

  16. Gudden (1870) Experimentaluntersuchungen über das peripherische und centrale Nervensystem. Eur Arch Psychiatry Clin Neurosci 2:693–723

    Google Scholar 

  17. Gudziol V, Buschhuter D, Abolmaali N et al (2009) Increasing olfactory bulb volume due to treatment of chronic rhinosinusitis – a longitudinal study. Brain 132:3096–3101

    Article  PubMed  CAS  Google Scholar 

  18. Lerch JP, Evans AC (2005) Cortical thickness analysis examined through power analysis and a population simulation. Neuroimage 24:163–173

    Article  PubMed  Google Scholar 

  19. Lledo PM, Saghatelyan A, Lemasson M (2004) Inhibitory interneurons in the olfactory bulb: from development to function. Neuroscientist 10:292–303

    Article  PubMed  CAS  Google Scholar 

  20. Martin JH (2003) The Basal Ganglia. In: Martin JH (Hrsg) Neuroanatomy - text and atlas. The McGraw-Hill Companies Inc, New York, S 326–349

  21. Maruniak JA, Taylor JA, Henegar JR et al (1989) Unilateral naris closure in adult mice: atrophy of the deprived-side olfactory bulbs. Brain Res Dev Brain Res 47:27–33

    Article  PubMed  CAS  Google Scholar 

  22. Mueller A, Rodewald A, Reden J et al (2005) Reduced olfactory bulb volume in post-traumatic and post-infectious olfactory dysfunction. Neuroreport 16:475–478

    Article  PubMed  Google Scholar 

  23. Nicola SM (2007) The nucleus accumbens as part of a basal ganglia action selection circuit. Psychopharmacology (Berl) 191:521–550

    Google Scholar 

  24. Noppeney U, Friston KJ, Ashburner J et al (2005) Early visual deprivation induces structural plasticity in gray and white matter. Curr Biol 15:R488–R490

    Article  PubMed  CAS  Google Scholar 

  25. Nordin S, Bramerson A (2008) Complaints of olfactory disorders: epidemiology, assessment and clinical implications. Curr Opin Allergy Clin Immunol 8:10–15

    Article  PubMed  Google Scholar 

  26. Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  PubMed  CAS  Google Scholar 

  27. Penhune VB, Cismaru R, Dorsaint-Pierre R et al (2003) The morphometry of auditory cortex in the congenitally deaf measured using MRI. Neuroimage 20:1215–1225

    Article  PubMed  Google Scholar 

  28. Qureshy A, Kawashima R, Imran MB et al (2000) Functional mapping of human brain in olfactory processing: a PET study. J Neurophysiol 84:1656–1666

    PubMed  CAS  Google Scholar 

  29. Ramirez-Lugo L, Nunez-Jaramillo L, Bermudez-Rattoni F (2007) Taste memory formation: role of nucleus accumbens. Chem Senses 32:93–97

    Article  PubMed  CAS  Google Scholar 

  30. Rombaux P, Mouraux A, Bertrand B et al (2006) Olfactory function and olfactory bulb volume in patients with postinfectious olfactory loss. Laryngoscope 116:436–439

    Article  PubMed  Google Scholar 

  31. Rombaux P, Mouraux A, Bertrand B et al (2006) Retronasal and orthonasal olfactory function in relation to olfactory bulb volume in patients with posttraumatic loss of smell. Laryngoscope 116:901–905

    Article  PubMed  Google Scholar 

  32. Rombaux P, Potier H, Bertrand B et al (2008) Olfactory bulb volume in patients with sinonasal disease. Am J Rhinol 22:598–601

    Article  PubMed  Google Scholar 

  33. Rombaux P, Potier H, Markessis E et al (2010) Olfactory bulb volume and depth of olfactory sulcus in patients with idiopathic olfactory loss. Eur Arch Otorhinolaryngol

  34. Rombaux P, Weitz H, Mouraux A et al (2006) Olfactory function assessed with orthonasal and retronasal testing, olfactory bulb volume, and chemosensory event-related potentials. Arch Otolaryngol Head Neck Surg 132:1346–1351

    Article  PubMed  Google Scholar 

  35. Shepherd GM (2006) Smell images and the flavour system in the human brain. Nature 444:316–321

    Article  PubMed  CAS  Google Scholar 

  36. Stathis P, Panourias IG, Themistocleous MS et al (2007) Connections of the basal ganglia with the limbic system: implications for neuromodulation therapies of anxiety and affective disorders. Acta Neurochir Suppl 97:575–586

    Article  PubMed  CAS  Google Scholar 

  37. Varney NR, Pinkston JB, Wu JC (2001) Quantitative PET findings in patients with posttraumatic anosmia. J Head Trauma Rehabil 16:253–259

    Article  PubMed  CAS  Google Scholar 

  38. Vennemann MM, Hummel T, Berger K (2008) The association between smoking and smell and taste impairment in the general population. J Neurol 255:1121–1126

    Article  PubMed  Google Scholar 

  39. Yousem DM, Geckle RJ, Bilker WB et al (1999) Posttraumatic smell loss: relationship of psychophysical tests and volumes of the olfactory bulbs and tracts and the temporal lobes. Acad Radiol 6:264–272

    Article  PubMed  CAS  Google Scholar 

  40. Zahm DS (2000) An integrative neuroanatomical perspective on some subcortical substrates of adaptive responding with emphasis on the nucleus accumbens. Neurosci Biobehav Rev 24:85–105

    Article  PubMed  CAS  Google Scholar 

  41. Zatorre RJ, Jones-Gotman M, Evans AC et al (1992) Functional localization and lateralization of human olfactory cortex. Nature 360:339–340

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Bitter.

Additional information

Daten aus der hier vorgestellten Studie wurden bereits andernorts publiziert [5].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bitter, T., Gudziol, H., Burmeister, H. et al. Volumenänderungen der grauen Hirnsubstanz bei Anosmikern. HNO 59, 248–254 (2011). https://doi.org/10.1007/s00106-011-2267-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00106-011-2267-2

Schlüsselwörter

Keywords

Navigation