Skip to main content
Log in

Schall- und Geschwindigkeits-DPOAE

Technologie, Methodik und Perspektiven

Sound and velocity DPOAEs

Technology, methodology and perspectives

  • Leitthema
  • Published:
HNO Aims and scope Submit manuscript

Zusammenfassung

Neuere Veröffentlichungen zeigen, dass Messungen der Distorsionsprodukte otoakustischer Emissionen (DPOAE) treffsicherere Diagnosen liefern, wenn erstens die DPOAE-Feinstruktur unterdrückt wird und zweitens die akustische Kalibration verbessert wird. Die Reduzierung der Feinstruktur wirkt sich v. a. im Frequenzbereich bis 4 kHz bei Personen mit intaktem cochleären Verstärker aus und kann die Standardabweichung einer auf DPOAE-Wachstumsfunktionen basierenden Schwellenschätzung von üblicherweise 11 auf 6 dB reduzieren. Eine verbesserte Kalibration des Schallfelds wirkt sich v. a. bei Frequenzen oberhalb 4 kHz aus. Auf laserinterferometrischen Messungen von DPOAE-Wachstumsfunktionen basierende Schwellenschätzungen mit Schallkalibration nahe dem Trommelfell lieferten eine Standardabweichung von 8,6 dB bei Menschen und 6,5 dB bei Meerschweinchen. Eine auf DPOAE-Wachstumsfunktionen basierende Schwellenschätzung hat gegenüber konventionellen DPOAE-Maßen wie DPOAE-Amplitude oder -Rauschabstand den Vorteil, dass mit ihrer Steigung ein unabhängiges Maß zur Verfügung steht, das – wenn auch mit begrenzter Spezifität – Informationen über das Mittelohr liefert. Die Kombination mit Verfahren wie der Messung der akustischen Reflektanz oder der Laservibrometrie am Umbo könnte in Zukunft eine zuverlässige Abgrenzung von Mittelohranteilen in DPOAE-Messungen liefern.

Abstract

Recent publications show that DPOAE measurements can generate a more accurate diagnosis, if (1) their fine structure is suppressed, and (2) if the calibration of the sound field is improved. Reduction of the fine structure is particularly important in the frequency range below 4 kHz in subjects with intact cochlear amplifier and can reduce the standard deviation of threshold estimations based on DPOAE-input/output functions from 11 dB to 6 dB. Improving the sound-field calibration has most impact in the frequency range above 4 kHz. Threshold estimations based on laserinterferometrically measured DPOAE input-output functions where the sound field was calibrated close to the tympanic membrane have been shown to reduce the standard deviation down to 8.6 dB in humans and 6.5 dB in guinea pigs. Compared with conventional DPOAE measures, such as amplitude or signal-to-noise ratio, threshold estimation based on DPOAE-I/O functions has the advantage that its slope provides additional information about the middle-ear; however, its specificity is limited. In the future, combined methods such as acoustic reflectance or laser vibrometry on the umbo promise a reliable assessment of the middle-ear contribution to DPOAE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Abbreviations

BM:

Basilarmembran

OAE:

otoakustische Emissionen

DPOAE:

Distorsionsprodukte otoakustischer Emissionen

TEOAE:

transient evozierte OAE

EDPT:

extrapolierte Distorsionsproduktschwelle („estimated distorsion product threshold“)

LDV:

Laser-Doppler-Vibrometer

ROC:

„receiver operating characteristic“

SNR:

Rauschabstand („signal-to-noise ratio“)

Literatur

  1. Kemp DT (1978) Stimulated acoustic emissions from within the human auditory system. J Acoust Soc Am 64:1386–1391

    Article  CAS  PubMed  Google Scholar 

  2. Nelson DA, Kimberley BP (1992) Distortion-product emissions and auditory sensitivity in human ears with normal hearing and cochlear hearing loss. J Speech Hear Res 35:1142–1159

    CAS  PubMed  Google Scholar 

  3. Schmuziger N, Patscheke J, Probst R (2006) Automated pure-tone threshold estimations from extrapolated distortion product otoacoustic emission (DPOAE) input/output functions. J Acoust Soc Am 119:1937–1939

    Article  PubMed  Google Scholar 

  4. Probst R, Lonsbury-Martin BL, Martin GK (1991) A review of otoacoustic emissions. J Acoust Soc Am 89:2027–2067

    Article  CAS  PubMed  Google Scholar 

  5. Gaskill SA, Brown AM (1990) The behavior of the acoustic distortion product, 2f1–f2, from the human ear and its relation to auditory sensitivity. J Acoust Soc Am 88:821–839

    Article  CAS  PubMed  Google Scholar 

  6. Robles L, Ruggero MA, Rich NC (1991) Two-tone distortion in the basilar membrane of the cochlea. Nature 349:413–414

    Article  CAS  PubMed  Google Scholar 

  7. Gorga MP, Neely ST, Bergman BM et al (1993) A comparison of transient-evoked and distortion product otoacoustic emissions in normal-hearing and hearing-impaired subjects. J Acoust Soc Am 94:2639–2648

    Article  CAS  PubMed  Google Scholar 

  8. Harris FP (1990) Distortion-product otoacoustic emissions in humans with high frequency sensorineural hearing loss. J Speech Hear Res 33:594–600

    CAS  PubMed  Google Scholar 

  9. Gorga MP, Neely ST, Bergman B et al (1993) Otoacoustic emissions from normal-hearing and hearing-impaired subjects: distortion product responses. J Acoust Soc Am 93:2050–2060

    Article  CAS  PubMed  Google Scholar 

  10. Probst R, Hauser R (1990) Distortion product otoacoustic emissions in normal and hearing-impaired ears. Am J Otolaryngol 11:236–243

    Article  CAS  PubMed  Google Scholar 

  11. Kimberley BP, Nelson DA (1989) Distortion product emissions and sensorineural hearing loss. J Otolaryngol 18:365–369

    CAS  PubMed  Google Scholar 

  12. Martin GK, Ohlms LA, Franklin DJ et al (1990) Distortion product emissions in humans. III. Influence of sensorineural hearing loss. Ann Otol Rhinol Laryngol Suppl 147:30–42

    CAS  PubMed  Google Scholar 

  13. Boege P, Janssen T (2002) Pure-tone threshold estimation from extrapolated distortion product otoacoustic emission I/O-functions in normal and cochlear hearing loss ears. J Acoust Soc Am 111:1810–1818

    Article  PubMed  Google Scholar 

  14. Gorga MP, Neely ST, Dorn PA, Hoover BM (2003) Further efforts to predict pure-tone thresholds from distortion product otoacoustic emission input/output functions. J Acoust Soc Am 113:3275–3284

    Article  PubMed  Google Scholar 

  15. Janssen T, Klein A, Gehr DD (2003) Automatisierte Hörschwellenbestimmung bei Neugeborenen mit extrapolierten DPOAE-Wachstumsfunktionen. HNO 51:971–980

    Article  CAS  PubMed  Google Scholar 

  16. Janssen T, Gehr DD, Klein A, Müller J (2005) Distortion product otoacoustic emissions for hearing threshold estimation and differentiation between middle-ear and cochlear disorders in neonates. J Acoust Soc Am 117:2969–2979

    Article  PubMed  Google Scholar 

  17. Kummer P, Schuster EM, Rosanowski F et al (2006) Der Einfluss einer Schallleitungsstörung auf die DPOAE-Schwelle: Möglichkeiten einer individuell optimierten Auslösung. HNO 54:457–467

    Article  CAS  PubMed  Google Scholar 

  18. Maison SF, Rosahl TW, Homanics GE, Liberman MC (2006) Functional role of GABAergic innervation of the cochlea: phenotypic analysis of mice lacking GABAA receptor subunits α1, α2, α5, α6, β2, β3, or δ. J Neurosci 26:10315–10326

    Article  CAS  PubMed  Google Scholar 

  19. Kim DO (1980) Cochlear mechanics: implications of electrophysiological and acoustical observations. Hear Res 2:297–317

    Article  CAS  PubMed  Google Scholar 

  20. Brown AM, Harris FP, Beveridge HA (1996) Two sources of acoustic distortion products from the human cochlea. J Acoust Soc Am 100:3260–3267

    Article  CAS  PubMed  Google Scholar 

  21. Kalluri R, Shera CA (2001) Distortion-product source unmixing: a test of the two-mechanism model for DPOAE generation. J Acoust Soc Am 109:622–637

    Article  CAS  PubMed  Google Scholar 

  22. Shera CA, Guinan JJ Jr (1999) Evoked otoacoustic emissions arise by two fundamentally different mechanisms: a taxonomy for mammalian OAEs. J Acoust Soc Am 105:782–798

    Article  CAS  PubMed  Google Scholar 

  23. Long GR, Talmadge CL, Lee J (2008) Measuring distortion product otoacoustic emissions using continuously sweeping primaries. J Acoust Soc Am 124:1613–1626

    Article  PubMed  Google Scholar 

  24. Vetešník A, Turcanu D, Dalhoff E, Gummer AW (2009) Extraction of sources of distortion product otoacoustic emissions by onset-decomposition. Hear Res 256:21–38

    Article  PubMed  Google Scholar 

  25. Shera CA, Zweig G (1993) Noninvasive measurement of the cochlear traveling-wave ratio. J Acoust Soc Am 93:3333–3352

    Article  CAS  PubMed  Google Scholar 

  26. Heitmann J, Waldmann B, Schnitzler HU et al (1998) Suppression of distortion product otoacoustic emissions (DPOAE) near 2f1–f2 removes DP-gram fine structure – Evidence for a secondary generator. J Acoust Soc Am 103:1527–1531

    Article  Google Scholar 

  27. Johnson TA, Neely ST, Kopun JG, Gorga MP (2006) Reducing reflected contributions to ear-canal distortion product otoacoustic emissions in humans. J Acoust Soc Am 119:3896–3907

    Article  PubMed  Google Scholar 

  28. Mauermann M, Kollmeier B (2004) Distortion product otoacoustic emission (DPOAE) input/output functions and the influence of the second DPOAE source. J Acoust Soc Am 116:2199–2212

    Article  PubMed  Google Scholar 

  29. Whitehead ML, Stagner BB, Martin GK, Lonsbury-Martin BL (1996) Visualization of the onset of distortion-product otoacoustic emissions and measurement of their latency. J Acoust Soc Am 100:1663–1679

    Article  CAS  PubMed  Google Scholar 

  30. Turcanu D, Vetešník A, Dalhoff E, Gummer AW (2009) Removal of the DPOAE second generation source with a pulsed paradigm method improves hearing threshold estimation in humans. In: Cooper NP, Kemp D (eds) Concepts and challenges in the biophysics of hearing. World Scientific, Singapore, pp 223–224

  31. Siegel JH, Hirohata ET (1994) Sound calibration and distortion product otoacoustic emissions at high frequencies. Hear Res 80:146–152

    Article  CAS  PubMed  Google Scholar 

  32. Dalhoff E, Turcanu D, Zenner H.-P, Gummer AW (2007) Distortion product otoacoustic emissions measured as vibration on the eardrum of human subjects. Proc Natl Acad Sci U S A 104:1546–1551

    Article  CAS  PubMed  Google Scholar 

  33. Turcanu D, Dalhoff E, Zenner H.-P, Gummer AW (2007) Laser-Doppler-vibrometrische Messungen von DPOAE an Menschen. Trommelfellschwingungen spiegeln Mittel- und Innenohrcharakteristika wider. HNO 55:930–937

    Article  CAS  PubMed  Google Scholar 

  34. Turcanu D, Dalhoff E, Müller M et al (2009) Accuracy of velocity distortion product otoacoustic emissions for estimating mechanically based hearing loss. Hear Res 251:17–28

    Article  PubMed  Google Scholar 

  35. Tielemans J (2001) Laserinterferometrische Messungen am Umbo von Hörgesunden. Dissertation, Medizinische Fakultät, Universität Tübingen

  36. Huber AM, Schwab C, Linder T et al (2001) Evaluation of eardrum laser doppler interferometry as a diagnostic tool. Laryngoscope 111:501–507

    Article  CAS  PubMed  Google Scholar 

  37. Whittemore KR, Merchant SN, Poon BB, Rosowski JJ (2004) A normative study of tympanic membrane motion in humans using a laser Doppler vibrometer (LDV). Hear Res 187:85–104

    Article  PubMed  Google Scholar 

  38. Voss SE, Rosowski JJ, Merchant SN, Peake WT (2000) Acoustic responses of the human middle ear. Hear Res 150:43–69

    Article  CAS  PubMed  Google Scholar 

  39. Keefe DH, Bulen JC, Arehart KH, Burns EM (1993) Ear-canal impedance and reflection coefficient in human infants and adults. J Acoust Soc Am 94:2617–2638

    Article  CAS  PubMed  Google Scholar 

  40. Voss SE, Allen JB (1994) Measurement of acoustic impedance and reflectance in the human ear canal. J Acoust Soc Am 95:372–384

    Article  CAS  PubMed  Google Scholar 

  41. Feeney MP, Grant IL, Marryott LP (2003) Wideband energy reflectance measurements in adults with middle-ear disorders. J Speech Lang Hear Res 46:901–911

    Article  PubMed  Google Scholar 

  42. Sanford CA, Keefe DH, Liu YW et al (2009) Sound-conduction effects on distortion-product otoacoustic emission screening outcomes in newborn infants: test performance of wideband acoustic transfer functions and 1-kHz tympanometry. Ear Hear 30:635–652

    Article  PubMed  Google Scholar 

  43. Dalhoff E, Turcanu D, Gummer AW (2009) A middle-ear reverse transfer function computed from vibration measurements of otoacoustic emissions on the ear drum of the guinea pig. In: Cooper NP, Kemp D (eds) Concepts and challenges in the biophysics of hearing. World Scientific, Singapore, pp 15–18

  44. Norton SJ, Gorga MP, Widen JE et al (2000) Identification of neonatal hearing impairment: summary and recommendations. Ear Hear 21:529–535

    Article  CAS  PubMed  Google Scholar 

  45. Widen JE, Folsom RC, Cone-Wesson B et al (2000) Identification of neonatal hearing impairment: hearing status at 8 to 12 months corrected age using a visual reinforcement audiometry protocol. Ear Hear 21:471–487

    Article  CAS  PubMed  Google Scholar 

  46. Talbott CB (1987) A longitudinal study comparing responses of hearing-impaired infants to pure tones using visual reinforcement and play audiometry. Ear Hear 8:175–179

    Article  CAS  PubMed  Google Scholar 

  47. Sachs L, Hedderich J (2006) Angewandte Statistik: Methodensammlung mit R. Springer, Berlin Heidelberg

  48. Hoth S, Neumann K, Weissschuh H et al (2009) Universelles Neugeborenen-Hörscreening. Aspekte des methodischen Vorgehens. HNO 57:29–36

    Article  CAS  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Dalhoff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dalhoff, E., Vetešník, A., Turcanu, D. et al. Schall- und Geschwindigkeits-DPOAE. HNO 58, 543–555 (2010). https://doi.org/10.1007/s00106-010-2104-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00106-010-2104-z

Schlüsselwörter

Keywords

Navigation