Skip to main content
Log in

Regeneration des N. facialis im Vergleich zu anderen peripheren Nerven

Aktuelles aus der Forschung für die Klinik

Regeneration of the facial nerve in comparison to other peripheral nerves

From bench to bedside

  • Leitthema
  • Published:
HNO Aims and scope Submit manuscript

Zusammenfassung

Das Wissen über die entscheidenden zellulären und molekularen Mechanismen der peripheren Nervenregeneration nimmt zu. Doch es gibt keine effektive Therapie peripherer Nervenverletzungen in der Klinik. Neue quantitative Ansätze zur Vermessung motorischer Defizite ermöglichten Studien innovativer Therapien im Tierexperiment: Funktionell wirkt sich v. a. die tägliche manuelle Stimulation denervierter Muskulatur bei erhaltenem sensorischem Input nach Nervenrekonstruktion gut aus. Sie scheint bei Läsionen des N. facialis geeignet für eine schnelle Translation in den klinischen Alltag. Dagegen scheint die manuelle Stimulation ineffektiv bei Läsionen gemischter peripherer Nerven zu sein. Bei Nagetieren wurde langfristig durch Elektrostimulation die Nervenregeneration nicht besser. Eine kurzzeitige Elektrostimulation direkt nach Trauma des N. facialis hat keinen signifikanten Effekt. Die wiederholte Elektrostimulation der Muskulatur in den Phasen der De- und Reinnervation behindert sogar die Muskelreinnervation. Medikamentös scheint die Applikation von Glykomimetika, Peptiden, die funktionelle Eigenschaften von Karbohydratmolekülen imitieren, besonders vielversprechend für die periphere Nervenregeneration.

Abstract

Despite increasing knowledge of cellular and molecular mechanisms determining the success or failure of peripheral nerve regeneration, no effective treatments for peripheral nerve injury exist. Newly developed and validated approaches for precise numerical assessment of motor deficits have recently allowed testing of novel strategies in experimental animals. One of these approaches is the daily manual stimulation of the denervated musculature. This treatment is effective in cases of cranial nerve lesions with preservation of the sensory input (facial or hypoglossal nerve) and has the potential of direct translation in clinical settings. However, manual stimulation appears to be ineffective for the treatment of mixed peripheral nerve injuries. Generally, no long-term improvement of functional recovery is achieved by electrical stimulation in rodents. While short-term post-traumatic stimulation of the proximal nerve stump has no negative effects, direct electrical stimulation of the muscle during the period of de- and reinnervation appears to hinder muscle fibre reinnervation. Finally, experimental evidence suggests that application of peptides known as glycomimetics, which mimic functional properties of carbohydrate molecules, may provide significant benefits after injuries of mixed peripheral nerves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Ahlborn P, Schachner M, Irintchev A (2007) One hour electrical stimulation accelerates functional recovery after femoral nerve repair. Exp Neurol 208:137–144

    Article  PubMed  Google Scholar 

  2. Al-Majed A, Brushart T, Gordon T (2000) Electrical stimulation accelerates and increases expression of BDNF and trkB mRNA in regenerating rat femoral motoneurons. Eur J Neurosci 12:4381–4390

    CAS  PubMed  Google Scholar 

  3. Al-Majed A, Neumann C, Brushart T et al (2000) Brief electrical stimulation promotes the speed and accuracy of motor axonal regeneration. J Neurosci 20:2602–2608

    CAS  PubMed  Google Scholar 

  4. Angelov DN, Ceynowa M, Guntinas-Lichius O et al (2007) Mechanical stimulation of paralyzed vibrissal muscles following facial nerve injury in adult rat promotes full recovery of whisking. Neurobiol Dis 26:229–242

    Article  PubMed  Google Scholar 

  5. Angelov DN, Skouras E, Guntinas-Lichius O et al (1999) Contralateral trigeminal nerve lesion reduces polyneuronal muscle innervation after facial nerve repair in rats. Eur J Neurosci 11:1369–1378

    Article  CAS  PubMed  Google Scholar 

  6. Bischoff A, Grosheva M, Irintchev A et al (2009) Manual stimulation of the orbicularis oculi muscle improves eyelid closure after facial nerve injury in adult rats. Muscle Nerve 39:197–205

    Article  PubMed  Google Scholar 

  7. Brushart TM (1993) Motor axons preferentially reinnervate motor pathways. J Neurosci 13:2730–2738

    CAS  PubMed  Google Scholar 

  8. Brushart TM (1988) Preferential reinnervation of motor nerves by regenerating motor axons. J Neurosci 8:1026–1031

    CAS  PubMed  Google Scholar 

  9. Brushart TM, Hoffman PN, Royall RM et al (2002) Electrical stimulation promotes motoneuron regeneration without increasing its speed or conditioning the neuron. J Neurosci 22:6631–6638

    CAS  PubMed  Google Scholar 

  10. Evgenieva E, Schweigert P, Guntinas-Lichius O et al (2008) Manual stimulation of the suprahyoid-sublingual region diminishes polynnervation of the motor endplates and improves recovery of function after hypoglossal nerve injury in rats. Neurorehabil Neural Repair 22:754–768

    Article  PubMed  Google Scholar 

  11. Gordon T, Chan K, Sulaiman O et al (2009) Accelerating axon growth to overcome limitations in functional recovery after peripheral nerve injury. Neurosurgery 65:132–144

    Article  Google Scholar 

  12. Guntinas-Lichius O, Angelov D (2008) Experimentelle Untersuchungen zur Verbesserung der Fazialisregeneration. HNO 56:122–130

    Article  CAS  PubMed  Google Scholar 

  13. Guntinas-Lichius O, Hundeshagen G, Paling T et al (2007) Manual stimulation of facial muscles improves functional recovery after hypoglossal-facial anastomosis and interpositional nerve grafting of the facial nerve in adult rats. Neurobiol Dis 28:101–112

    Article  PubMed  Google Scholar 

  14. Guntinas-Lichius O, Irintchev A, Streppel M et al (2005) Factors limiting motor recovery after facial nerve transection in the rat: combined structural and functional analyses. Eur J Neurosci 21:391–402

    Article  PubMed  Google Scholar 

  15. Guntinas-Lichius O, Straesser A, Streppel M (2007) Quality of life after facial nerve repair. Laryngoscope 117:421–426

    Article  PubMed  Google Scholar 

  16. Guseva D, Angelov D, Irintchev A et al (2009) Ablation of adhesion molecule L1 in mice favours Schwann cell proliferation and functional recovery after peripheral nerve injury. Brain 132:2180–2195

    Article  PubMed  Google Scholar 

  17. Irintchev A, Simova O, Eberhardt K et al (2005) Impacts of lesion severity and tyrosine kinase receptor B deficiency on functional outcome of femoral nerve injury assessed by a novel single-frame motion analysis in mice. Eur J Neurosci 22:802–808

    Article  PubMed  Google Scholar 

  18. Irintchev A, Wu M, Lee HJ et al (2009) Efficient glycomimetic treatment of femoral nerve injury in primates (Macaca fascicularis). Neurorehabil Neural Repair 33 (Abstract)

  19. Kleene R, Schachner M (2004) Glycans and neural cell interactions. Nat Rev Neurosci 5:195–208

    Article  CAS  PubMed  Google Scholar 

  20. Mehanna A, Jakovcevski I, Acar A et al (2009) Polysialic Acid Glycomimetic Promotes Functional Recovery and Plasticity After Spinal Cord Injury in Mice. Mol Ther 18:34–43

    Article  PubMed  Google Scholar 

  21. Mehanna A, Mishra B, Kurschat N et al (2009) Polysialic acid glycomimetics promote myelination and functional recovery after peripheral nerve injury in mice. Brain 132:1449–1462

    Article  PubMed  Google Scholar 

  22. Pavlov S, Grosheva M, Streppel M et al (2008) Manually-stimulated recovery of motor function after facial nerve injury requires intact sensory input. Exp Neurol 211:292–300

    Article  PubMed  Google Scholar 

  23. Peeva GP, Angelova SK, Guntinas-Lichius O et al (2006) Improved outcome of facial nerve repair in rats is associated with enhanced regenerative response of motoneurons and augmented neocortical plasticity. Eur J Neurosci 24:2152–2162

    Article  PubMed  Google Scholar 

  24. Rutishauser U (2008) Polysialic acid in the plasticity of the developing and adult vertebrate nervous system. Nat Rev Neurosci 9:26–35

    Article  CAS  PubMed  Google Scholar 

  25. Simova O, Irintchev A, Mehanna A et al (2006) Carbohydrate mimics promote functional recovery after peripheral nerve repair. Ann Neurol 60:430–437

    Article  CAS  PubMed  Google Scholar 

  26. Sinis N, Guntinas-Lichius O, Irintchev A et al (2008) Manual stimulation of forearm muscles does not improve recovery of motor function after injury to a mixed peripheral nerve. Exp Brain Res 185:469–483

    Article  CAS  PubMed  Google Scholar 

  27. Sinis N, Horn F, Genchev B et al (2009) Electrical stimulation of paralyzed vibrissal muscles reduces endplate reinnervation and does not promote motor recovery after facial nerve repair in rats. Ann Anat 191:356–370

    Article  PubMed  Google Scholar 

  28. Skouras E, Merkel D, Grosheva M et al (2009) Manual stimulation, but not acute electrical stimulation prior to reconstructive surgery, improves functional recovery after facial nerve injury in rats. Restor Neurol Neurosci 27:237–251

    PubMed  Google Scholar 

  29. Skouras E, Popratiloff A, Guntinas-Lichius O et al (2002) Altered sensory input improves the accuracy of muscle reinnervation. Restor Neurol Neurosci 20:1–14

    PubMed  Google Scholar 

  30. Tomov TL, Guntinas-Lichius O, Grosheva M et al (2002) An example of neural plasticity evoked by putative behavioral demand and early use of vibrissal hairs after facial nerve transection. Exp Neurol 178:207–218

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Irintchev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Irintchev, A., Angelov, D. & Guntinas-Lichius, O. Regeneration des N. facialis im Vergleich zu anderen peripheren Nerven. HNO 58, 426–432 (2010). https://doi.org/10.1007/s00106-010-2100-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00106-010-2100-3

Schlüsselwörter

Keywords

Navigation