Bedeutung von Stress

Seine Rolle im auditorischen System und bei der Tinnitusentstehung

The significance of stress

Its role in the auditory system and the pathogenesis of tinnitus

Zusammenfassung

Emotionaler Stress geht häufig einher mit auditorischen Phänomenen wie Hyperakusis, Tinnitus, M. Menière und Schwindel. Stress entsteht als Ergebnis der Auseinandersetzung einer Person mit den erhöhten oder unerwarteten Anforderungen ihrer Umwelt. Ziele sind Abwehr von Gefahren und kurzzeitige Leistungssteigerung, um die Überlebenswahrscheinlichkeit zu erhöhen. Schlaf und Appetit werden reduziert und das Angsterleben erhöht. Diese psychischen Veränderungen nach Stress können z. B. Einfluss auf die Entstehung oder Verstärkung von Tinnitus haben. Zwischen auditorischem und Stresssystem bestehen folgende Verbindungen: Das limbische System reguliert instinktives Verhalten und Emotionen und verbindet dies mit dem auditorischen System via Corpus geniculatum mediale (Amygdala). Der Hypothalamus ist das Integrationszentrum für das endokrine und autonome System und ist über den Colliculus inferior mit dem auditorischen System verbunden. Das retikuläre System ist auf den Verhaltensstatus der Aufmerksamkeit und Erregung konzentriert und projiziert serotonerge Fasern zu allen Ebenen des auditorischen Systems von der Kochlea bis zum auditorischen Kortex.

Abstract

Emotional stress is often associated with auditory phenomena such as hyperacusis, tinnitus, Ménière’s disease and vertigo. Stress develops as a result of a person’s attempts to come to terms with the increased or unexpected demands of his or her environment. Stress serves to protect one from physical danger and to temporarily increase one’s performance in order to increase the probability of survival. Sleep and appetite are particularly reduced, while anxiety increases. The mental changes induced by stress may contribute to the onset or exacerbation of tinnitus. The following links exist between the auditory and stress systems: the limbic system, which regulates instinctive behavior and emotions, is linked to the auditory system via the medial geniculate body (amygdala). The hypothalamus, which is the integrative center of the endocrine and autonomic systems, is linked to the auditory system via the inferior colliculus. The reticular system, which is focused on the behavior pattern of attention and excitement, projects serotonergic fibers to all pathways of the auditory system, ranging from the cochlea to the auditory cortex.

This is a preview of subscription content, access via your institution.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. 1.

    Adams JC (1980) Crossed and descending projections to the inferior colliculus. Neurosci Lett 19:1–5

    CAS  PubMed  Google Scholar 

  2. 2.

    Adcock IM, Ito K (2000) Molecular mechanisms of corticosteroid actions. Monaldi Arch Chest Dis 55:256–266

    CAS  PubMed  Google Scholar 

  3. 3.

    Ader R (2003) Conditioned immunomodulation: research needs and directions. Brain Behav Immun 17(Suppl 1):S51–S57

    CAS  PubMed  Google Scholar 

  4. 4.

    al’Absi M, Arnett DK (2000) Adrenocortical responses to psychological stress and risk for hypertension. Biomed Pharmacother 54:234–244

    Google Scholar 

  5. 5.

    Barbany G, Persson H (1992) Regulation of neurotrophin mRNA expression in the rat brain by glucocorticoids. Eur J Neurosci 4:396–403

    PubMed  Google Scholar 

  6. 6.

    Barbazanges A, Piazza PV, Le Moal M et al (1996) Maternal glucocorticoid secretion mediates long-term effects of prenatal stress. J Neurosci 16:3943–3949

    CAS  PubMed  Google Scholar 

  7. 7.

    Barden N, Reul JM, Holsboer F (1995) Do antidepressants stabilize mood through actions on the hypothalamic-pituitary-adrenocortical system? Trends Neurosci 18:6–11

    CAS  PubMed  Google Scholar 

  8. 8.

    Barnes PJ (1998) Anti-inflammatory actions of glucocorticoids: molecular mechanisms. Clin Sci (Lond) 94:557–572

    Google Scholar 

  9. 9.

    Barnes PJ (2005) Molecular mechanisms and cellular effects of glucocorticosteroids. Immunol Allergy Clin North Am 25:451–468

    PubMed  Google Scholar 

  10. 10.

    Barnes PJ (2006) Corticosteroid effects on cell signalling. Eur Respir J 27:413–426

    CAS  PubMed  Google Scholar 

  11. 11.

    Batta TJ, Panyi G, Szucs A et al (2004) Regulation of the lateral wall stiffness by acetylcholine and GABA in the outer hair cells of the guinea pig. Eur J Neurosci 20:3364–3370

    PubMed  Google Scholar 

  12. 12.

    Berg PA (2005) Neuroimmunologische Apskete funktioneller somatischer Syndrome. Dtsch Med Wochenschr 130:107–113

    CAS  PubMed  Google Scholar 

  13. 13.

    Bhave SA, Stone JS, Rubel EW et al (1995) Cell cycle progression in gentamicin-damaged avian cochleas. J Neurosci 15:4618–4628

    CAS  PubMed  Google Scholar 

  14. 14.

    Boadle-Biber MC, Singh VB, Corley KC et al (1993) Evidence that corticotropin-releasing factor within the extended amygdala mediates the activation of tryptophan hydroxylase produced by sound stress in the rat. Brain Res 628:105–114

    CAS  PubMed  Google Scholar 

  15. 15.

    Boudarene M, Legros JJ, Timsit-Berthier M (2002) Study of the stress response: role of anxiety, cortisol and DHEAs. Encephale 28:139–146

    CAS  PubMed  Google Scholar 

  16. 16.

    Bradbury MJ, Giracello DR, Chapman DF et al (2003) Metabotropic glutamate receptor 5 antagonist-induced stimulation of hypothalamic-pituitary-adrenal axis activity: interaction with serotonergic systems. Neuropharmacology 44:562–572

    CAS  PubMed  Google Scholar 

  17. 17.

    Brann DW (1995) Glutamate: a major excitatory transmitter in neuroendocrine regulation. Neuroendocrinology 61:213–225

    CAS  PubMed  Google Scholar 

  18. 18.

    Bremner JD (2005) Understanding trauma-relazed disorders from a mind-body perspective: Does stress damage the brain? W.W. Norton & Co., New York

  19. 19.

    Canlon B, Erichsen S, Nemlander E et al (2003) Alterations in the intrauterine environment by glucocorticoids modifies the developmental programme of the auditory system. Eur J Neurosci 17:2035–2041

    PubMed  Google Scholar 

  20. 20.

    Canlon B, Meltser I, Johansson P et al (2007) Glucocorticoid receptors modulate auditory sensitivity to acoustic trauma. Hear Res 226:61–69

    CAS  PubMed  Google Scholar 

  21. 21.

    Caspi A, Sugden K, Moffitt TE et al (2003) Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 301:386–389

    CAS  PubMed  Google Scholar 

  22. 22.

    Castro SL, Zigmond MJ (2001) Stress-induced increase in extracellular dopamine in striatum: role of glutamatergic action via N-methyl-D-aspartate receptors in substantia nigra. Brain Res 901:47–54

    CAS  PubMed  Google Scholar 

  23. 23.

    Chao HM, Sakai RR, Ma LY et al (1998) Adrenal steroid regulation of neurotrophic factor expression in the rat hippocampus. Endocrinology 139:3112–3118

    CAS  PubMed  Google Scholar 

  24. 24.

    Chrousos GP, Kino T (2005) Intracellular glucocorticoid signaling: a formerly simple system turns stochastic. Sci STKE 2005:e48

    Google Scholar 

  25. 25.

    Cohen H, Zohar J, Gidron Y et al (2006) Blunted HPA axis response to stress influences susceptibility to posttraumatic stress response in rats. Biol Psychiatry 59:1208–1218

    CAS  PubMed  Google Scholar 

  26. 26.

    Cryan JF, Kelly PH, Neijt HC et al (2003) Antidepressant and anxiolytic-like effects in mice lacking the group III metabotropic glutamate receptor mGluR7. Eur J Neurosci 17:2409–2417

    PubMed  Google Scholar 

  27. 27.

    Curtis LM, Rarey KE (1995) Effect of stress on cochlear glucocorticoid protein. II. Restraint. Hear Res 92:120–125

    CAS  PubMed  Google Scholar 

  28. 28.

    d’Aldin C, Cherny L, Devriere F et al (1999) Treatment of acoustic trauma. Ann N Y Acad Sci 884:328–344

    Google Scholar 

  29. 29.

    Darrow KN, Simons EJ, Dodds L et al (2006) Dopaminergic innervation of the mouse inner ear: evidence for a separate cytochemical group of cochlear efferent fibers. J Comp Neurol 498:403–414

    CAS  PubMed  Google Scholar 

  30. 30.

    Datson NA, Morsink MC, Meijer OC et al (2008) Central corticosteroid actions: Search for gene targets. Eur J Pharmacol 583:272–289

    CAS  PubMed  Google Scholar 

  31. 31.

    Datson NA, van der PJ, de Kloet ER et al (2001) Identification of corticosteroid-responsive genes in rat hippocampus using serial analysis of gene expression. Eur J Neurosci 14:675–689

    CAS  PubMed  Google Scholar 

  32. 32.

    Dauman R, Bouscau-Faure F (2005) Assessment and amelioration of hyperacusis in tinnitus patients. Acta Otolaryngol 125:503–509

    PubMed  Google Scholar 

  33. 33.

    Dayal VS, Ellman M, Sweiss N (2008) Autoimmune inner ear disease: clinical and laboratory findings and treatment outcome. J Otolaryngol Head Neck Surg 37:591–596

    PubMed  Google Scholar 

  34. 34.

    de Kloet ER (2008) About stress hormones and resilience to psychopathology. J Neuroendocrinol 20:885–892

    Google Scholar 

  35. 35.

    de Kloet ER, de Jong IE, Oitzl MS (2008) Neuropharmacology of glucocorticoids: focus on emotion, cognition and cocaine. Eur J Pharmacol 585:473–482

    Google Scholar 

  36. 36.

    de Kloet ER, Joels M, Holsboer F (2005) Stress and the brain: from adaptation to disease. Nat Rev Neurosci 6:463–475

    Google Scholar 

  37. 37.

    de Kloet ER, Vreugdenhil E, Oitzl MS et al (1998) Brain corticosteroid receptor balance in health and disease. Endocr Rev 19:269–301

    Google Scholar 

  38. 38.

    De Vos J (1963) Deafness in hypothyroidism. J Laryngol Otol 77:390–414

    Google Scholar 

  39. 39.

    Deol MS (1973) An experimental approach to the understanding and treatment of hereditary syndromes with congenital deafness and hypothyroidism. J Med Genet 10:235–242

    CAS  PubMed  Google Scholar 

  40. 40.

    DeRijk R, Michelson D, Karp B et al (1997) Exercise and circadian rhythm-induced variations in plasma cortisol differentially regulate interleukin-1 beta (IL-1 beta), IL-6 and tumor necrosis factor-alpha (TNF alpha) production in humans: high sensitivity of TNF alpha and resistance of IL-6. J Clin Endocrinol Metab 82:2182–2191

    CAS  PubMed  Google Scholar 

  41. 41.

    Desai S, Khanani S, Shad MU et al (2009) Attenuation of amygdala atrophy with lamotrigine in patients receiving corticosteroid therapy. J Clin Psychopharmacol 29:284–287

    CAS  PubMed  Google Scholar 

  42. 42.

    Despopoulus A, Silbernagl S (1991) Autonomic nervous system. In: Despopoulus A, Silbernagl S (eds) Color atlas of physiology. Thieme, Stuttgart, pp 50–59

  43. 43.

    Diorio D, Viau V, Meaney MJ (1993) The role of the medial prefrontal cortex (cingulate gyrus) in the regulation of hypothalamic-pituitary-adrenal responses to stress. J Neurosci 13:3839–3847

    CAS  PubMed  Google Scholar 

  44. 44.

    Doleviczenyi Z, Halmos G, Repassy G et al (2005) Cochlear dopamine release is modulated by group II metabotropic glutamate receptors via GABAergic neurotransmission. Neurosci Lett 385:93–98

    CAS  PubMed  Google Scholar 

  45. 45.

    Dong Y, Saal D, Thomas M et al (2004) Cocaine-induced potentiation of synaptic strength in dopamine neurons: behavioral correlates in GluRA(−/−) mice. Proc Natl Acad Sci U S A 101:14282–14287

    CAS  PubMed  Google Scholar 

  46. 46.

    Dronjak S, Gavrilovic L, Filipovic D et al (2004) Immobilization and cold stress affect sympatho-adrenomedullary system and pituitary-adrenocortical axis of rats exposed to long-term isolation and crowding. Physiol Behav 81:409–415

    CAS  PubMed  Google Scholar 

  47. 47.

    Duman RS (2002) Pathophysiology of depression: the concept of synaptic plasticity. Eur Psychiatry 17(Suppl 3):306–310

    PubMed  Google Scholar 

  48. 48.

    Durand D, Pampillo M, Caruso C et al (2008) Role of metabotropic glutamate receptors in the control of neuroendocrine function. Neuropharmacology 55:577–583

    CAS  PubMed  Google Scholar 

  49. 49.

    Eggermont JJ (2005) Tinnitus: neurobiological substrates. Drug Discov Today 10:1283–1290

    PubMed  Google Scholar 

  50. 50.

    Elenkov IJ, Chrousos GP (1999) Stress Hormones, Th1/Th2 patterns, Pro/Anti-inflammatory Cytokines and Susceptibility to Disease. Trends Endocrinol Metab 10:359–368

    CAS  PubMed  Google Scholar 

  51. 51.

    Eskandari F, Webster JI, Sternberg EM (2003) Neural immune pathways and their connection to inflammatory diseases. Arthritis Res Ther 5:251–265

    CAS  PubMed  Google Scholar 

  52. 52.

    Filipovic D, Gavrilovic L, Dronjak S et al (2008) Liver glucocorticoid receptor and heat shock protein 70 levels in rats exposed to different stress models. Physiol Res 57:205–213

    CAS  PubMed  Google Scholar 

  53. 53.

    Friedman Y, Bacchus R, Raymond R et al (1999) Acute stress increases thyroid hormone levels in rat brain. Biol Psychiatry 45:234–237

    CAS  PubMed  Google Scholar 

  54. 54.

    Fries E, Hesse J, Hellhammer J et al (2005) A new view on hypocortisolism. Psychoneuroendocrinology 30:1010–1016

    CAS  PubMed  Google Scholar 

  55. 55.

    Frodl TS, Koutsouleris N, Bottlender R et al (2008) Depression-related variation in brain morphology over 3 years: effects of stress? Arch Gen Psychiatry 65:1156–1165

    PubMed  Google Scholar 

  56. 56.

    Fumagalli F, Bedogni F, Perez J et al (2004) Corticostriatal brain-derived neurotrophic factor dysregulation in adult rats following prenatal stress. Eur J Neurosci 20:1348–1354

    PubMed  Google Scholar 

  57. 57.

    Furuta H, Mori N, Sato C et al (1994) Mineralocorticoid type I receptor in the rat cochlea: mRNA identification by polymerase chain reaction (PCR) and in situ hybridization. Hear Res 78:175–180

    CAS  PubMed  Google Scholar 

  58. 58.

    Gagnon PM, Simmons DD, Bao J et al (2007) Temporal and genetic influences on protection against noise-induced hearing loss by hypoxic preconditioning in mice. Hear Res 226:79–91

    PubMed  Google Scholar 

  59. 59.

    Geuze E, van Berckel BN, Lammertsma AA et al (2008) Reduced GABAA benzodiazepine receptor binding in veterans with post-traumatic stress disorder. Mol Psychiatry 13:74–83, 3

    CAS  PubMed  Google Scholar 

  60. 60.

    Gil-Loyzaga P, Bartolome V, Vicente-Torres A et al (2000) Serotonergic innervation of the organ of Corti. Acta Otolaryngol 120:128–132

    CAS  PubMed  Google Scholar 

  61. 61.

    Gonzalez-Burgos I, Feria-Velasco A (2008) Serotonin/dopamine interaction in memory formation. Prog Brain Res 172:603–623

    CAS  PubMed  Google Scholar 

  62. 62.

    Gray TS, Bingaman EW (1996) The amygdala: corticotropin-releasing factor, steroids and stress. Crit Rev Neurobiol 10:155–168

    CAS  PubMed  Google Scholar 

  63. 63.

    Griffin WC III, Skinner HD, Salm AK et al (2003) Mild prenatal stress in rats is associated with enhanced conditioned fear. Physiol Behav 79:209–215

    CAS  PubMed  Google Scholar 

  64. 64.

    Gruber DD, Dang H, Shimozono M et al (1998) Alpha1A-adrenergic receptors mediate vasoconstriction of the isolated spiral modiolar artery in vitro. Hear Res 119:113–124

    CAS  PubMed  Google Scholar 

  65. 65.

    Haas HS, Schauenstein K (1997) Neuroimmunomodulation via limbic structures-the neuroanatomy of psychoimmunology. Prog Neurobiol 51:195–222

    CAS  PubMed  Google Scholar 

  66. 66.

    Hadcock JR, Malbon CC (1988) Regulation of beta-adrenergic receptors by „permissive“ hormones: glucocorticoids increase steady-state levels of receptor mRNA. Proc Natl Acad Sci U S A 85:8415–8419

    CAS  PubMed  Google Scholar 

  67. 67.

    Hebert S, Lupien SJ (2007) The sound of stress: blunted cortisol reactivity to psychosocial stress in tinnitus sufferers. Neurosci Lett 411:138–142

    CAS  PubMed  Google Scholar 

  68. 68.

    Hebert S, Lupien SJ (2009) Salivary cortisol levels, subjective stress and tinnitus intensity in tinnitus sufferers during noise exposure in the laboratory. Int J Hyg Environ Health 212:37–44

    PubMed  Google Scholar 

  69. 69.

    Hebert S, Paiement P, Lupien SJ (2004) A physiological correlate for the intolerance to both internal and external sounds. Hear Res 190:1–9

    PubMed  Google Scholar 

  70. 70.

    Hegerl U, Juckel G (1993) Intensity dependence of auditory evoked potentials as an indicator of central serotonergic neurotransmission: a new hypothesis. Biol Psychiatry 33:173–187

    CAS  PubMed  Google Scholar 

  71. 71.

    Heinz A, Hermann D, Smolka MN et al (2003) Effects of acute psychological stress on adhesion molecules, interleukins and sex hormones: implications for coronary heart disease. Psychopharmacology (Berl) 165:111–117

    Google Scholar 

  72. 72.

    Hellhammer DH, Wade S (1993) Endocrine correlates of stress vulnerability. Psychother Psychosom 60:8–17

    CAS  PubMed  Google Scholar 

  73. 73.

    Herman JP, Adams D, Prewitt C (1995) Regulatory changes in neuroendocrine stress-integrative circuitry produced by a variable stress paradigm. Neuroendocrinology 61:180–190

    CAS  PubMed  Google Scholar 

  74. 74.

    Hewitt SA, Bains JS (2006) Brain-derived neurotrophic factor silences GABA synapses onto hypothalamic neuroendocrine cells through a postsynaptic dynamin-mediated mechanism. J Neurophysiol 95:2193–2198

    CAS  PubMed  Google Scholar 

  75. 75.

    Holgers KM, Erlandsson SI, Barrenas ML (2000) Predictive factors for the severity of tinnitus. Audiology 39:284–291

    CAS  PubMed  Google Scholar 

  76. 76.

    Horner KC (2003) The emotional ear in stress. Neurosci Biobehav Rev 27:437–446

    CAS  PubMed  Google Scholar 

  77. 77.

    Hougaard KS, Andersen MB, Hansen AM et al (2005) Effects of prenatal exposure to chronic mild stress and toluene in rats. Neurotoxicol Teratol 27:153–167

    CAS  PubMed  Google Scholar 

  78. 78.

    Hurley LM, Thompson AM, Pollak GD (2002) Serotonin in the inferior colliculus. Hear Res 168:1–11

    CAS  PubMed  Google Scholar 

  79. 79.

    Inoue T, Matsubara A, Maruya S et al (2006) Localization of dopamine receptor subtypes in the rat spiral ganglion. Neurosci Lett 399:226–229

    CAS  PubMed  Google Scholar 

  80. 80.

    Jastreboff PJ, Hazell JW (1993) A neurophysiological approach to tinnitus: clinical implications. Br J Audiol 27:7–17

    CAS  PubMed  Google Scholar 

  81. 81.

    Joels M, de Kloet ER (1993) Corticosteroid actions on amino acid-mediated transmission in rat CA1 hippocampal cells. J Neurosci 13:4082–4090

    CAS  PubMed  Google Scholar 

  82. 82.

    Juckel G, Molnar M, Hegerl U et al (1997) Auditory-evoked potentials as indicator of brain serotonergic activity-first evidence in behaving cats. Biol Psychiatry 41:1181–1195

    CAS  PubMed  Google Scholar 

  83. 83.

    Juhn SK, Ikeda K, Morizono T et al (1991) Pathophysiology of inner ear fluid imbalance. Acta Otolaryngol Suppl 485:9–14

    CAS  PubMed  Google Scholar 

  84. 84.

    Juhn SK, Li W, Kim JY et al (1999) Effect of stress-related hormones on inner ear fluid homeostasis and function. Am J Otol 20:800–806

    CAS  PubMed  Google Scholar 

  85. 85.

    Kadner A, Pressimone VJ, Lally BE et al (2006) Low-frequency hearing loss in prenatally stressed rats. Neuroreport 17:635–638

    PubMed  Google Scholar 

  86. 86.

    Kaehler ST, Singewald N, Sinner C et al (2000) Conditioned fear and inescapable shock modify the release of serotonin in the locus coeruleus. Brain Res 859:249–254

    CAS  PubMed  Google Scholar 

  87. 87.

    Kaplan JR, Pettersson K, Manuck SB et al (1991) Role of sympathoadrenal medullary activation in the initiation and progression of atherosclerosis. Circulation 84:VI23–VI32

    CAS  PubMed  Google Scholar 

  88. 88.

    Karadaghy AA, Lasak JM, Chomchai JS et al (1997) Quantitative analysis of dopamine receptor messages in the mouse cochlea. Brain Res Mol Brain Res 44:151–156

    CAS  PubMed  Google Scholar 

  89. 89.

    Katzenell U, Segal S (2001) Hyperacusis: review and clinical guidelines. Otol Neurotol 22:321–326

    CAS  PubMed  Google Scholar 

  90. 90.

    Kim JJ, Foy MR, Thompson RF (1996) Behavioral stress modifies hippocampal plasticity through N-methyl-D-aspartate receptor activation. Proc Natl Acad Sci U S A 93:4750–4753

    CAS  PubMed  Google Scholar 

  91. 91.

    Kleinlogel S, Oestreicher E, Arnold T et al (1999) Metabotropic glutamate receptors group I are involved in cochlear neurotransmission. Neuroreport 10:1879–1882

    CAS  PubMed  Google Scholar 

  92. 92.

    Koenig JI, Elmer GI, Shepard PD et al (2005) Prenatal exposure to a repeated variable stress paradigm elicits behavioral and neuroendocrinological changes in the adult offspring: potential relevance to schizophrenia. Behav Brain Res 156:251–261

    PubMed  Google Scholar 

  93. 93.

    Kole MH, Swan L, Fuchs E (2002) The antidepressant tianeptine persistently modulates glutamate receptor currents of the hippocampal CA3 commissural associational synapse in chronically stressed rats. Eur J Neurosci 16:807–816

    PubMed  Google Scholar 

  94. 94.

    Kopke R, Allen KA, Henderson D et al (1999) A radical demise. Toxins and trauma share common pathways in hair cell death. Ann N Y Acad Sci 884:171–191

    CAS  PubMed  Google Scholar 

  95. 95.

    Korte M, Carroll P, Wolf E et al (1995) Hippocampal long-term potentiation is impaired in mice lacking brain-derived neurotrophic factor. Proc Natl Acad Sci U S A 92:8856–8860

    CAS  PubMed  Google Scholar 

  96. 96.

    Kudielka BM, Schommer NC, Hellhammer DH et al (2004) Acute HPA axis responses, heart rate and mood changes to psychosocial stress (TSST) in humans at different times of day. Psychoneuroendocrinology 29:983–992

    CAS  PubMed  Google Scholar 

  97. 97.

    Kuningas M, de Rijk RH, Westendorp RG et al (2007) Mental performance in old age dependent on cortisol and genetic variance in the mineralocorticoid and glucocorticoid receptors. Neuropsychopharmacology 32:1295–1301

    CAS  PubMed  Google Scholar 

  98. 98.

    Kyrou I, Tsigos C (2007) Stress mechanisms and metabolic complications. Horm Metab Res 39:430–438

    CAS  PubMed  Google Scholar 

  99. 99.

    Lamm K, Arnold W (1998) The effect of prednisolone and non-steroidal anti-inflammatory agents on the normal and noise-damaged guinea pig inner ear. Hear Res 115:149–161

    CAS  PubMed  Google Scholar 

  100. 100.

    Landgraf R (2003) Neurobiologie und Genetik der Angst im Tiermodell. Nervenarzt 74:274–278

    CAS  PubMed  Google Scholar 

  101. 101.

    Laurikainen EA, Costa O, Miller JM et al (1994) Neuronal regulation of cochlear blood flow in the guinea-pig. J Physiol 480(Pt 3):563–573

    CAS  PubMed  Google Scholar 

  102. 102.

    Levine S (2005) Developmental determinants of sensitivity and resistance to stress. Psychoneuroendocrinology 30:939–946

    PubMed  Google Scholar 

  103. 103.

    Li S, Wang C, Wang W et al (2008) Chronic mild stress impairs cognition in mice: from brain homeostasis to behavior. Life Sci 82:934–942

    CAS  PubMed  Google Scholar 

  104. 104.

    Lin X, Chen S, Chen P (2000) Activation of metabotropic GABAB receptors inhibited glutamate responses in spiral ganglion neurons of mice. Neuroreport 11:957–961

    CAS  PubMed  Google Scholar 

  105. 105.

    Long L, Li G, Chen W et al (2008) Distribution of serotonin immunoreactivity in the spiral ganglion neurons of mouse cochlea. Int J Pediatr Otorhinolaryngol 72:1003–1006

    PubMed  Google Scholar 

  106. 106.

    Lopes da Silva FH, Witter MP, Boeijinga PH et al (1990) Anatomic organization and physiology of the limbic cortex. Physiol Rev 70:453–511

    Google Scholar 

  107. 107.

    Lopez JF, Chalmers DT, Little KY et al (1998) A.E. Bennett Research Award. Regulation of serotonin1A, glucocorticoid and mineralocorticoid receptor in rat and human hippocampus: implications for the neurobiology of depression. Biol Psychiatry 43:547–573

    CAS  PubMed  Google Scholar 

  108. 108.

    Maccari S, Darnaudery M, Morley-Fletcher S et al (2003) Prenatal stress and long-term consequences: implications of glucocorticoid hormones. Neurosci Biobehav Rev 27:119–127

    CAS  PubMed  Google Scholar 

  109. 109.

    Maccari S, Morley-Fletcher S (2007) Effects of prenatal restraint stress on the hypothalamus-pituitary-adrenal axis and related behavioural and neurobiological alterations. Psychoneuroendocrinology 32(Suppl 1):S10–S15

    CAS  PubMed  Google Scholar 

  110. 110.

    Maccari S, Piazza PV, Kabbaj M et al (1995) Adoption reverses the long-term impairment in glucocorticoid feedback induced by prenatal stress. J Neurosci 15:110–116

    CAS  PubMed  Google Scholar 

  111. 111.

    MacQueen GM, Ramakrishnan K, Ratnasingan R et al (2003) Desipramine treatment reduces the long-term behavioural and neurochemical sequelae of early-life maternal separation. Int J Neuropsychopharmacol 6:391–396

    CAS  PubMed  Google Scholar 

  112. 112.

    Magarinos AM, McEwen BS (1995) Stress-induced atrophy of apical dendrites of hippocampal CA3c neurons: involvement of glucocorticoid secretion and excitatory amino acid receptors. Neuroscience 69:89–98

    CAS  PubMed  Google Scholar 

  113. 113.

    Magarinos AM, McEwen BS, Flugge G et al (1996) Chronic psychosocial stress causes apical dendritic atrophy of hippocampal CA3 pyramidal neurons in subordinate tree shrews. J Neurosci 16:3534–3540

    CAS  PubMed  Google Scholar 

  114. 114.

    Magarinos AM, Verdugo JM, McEwen BS (1997) Chronic stress alters synaptic terminal structure in hippocampus. Proc Natl Acad Sci U S A 94:14002–14008

    CAS  PubMed  Google Scholar 

  115. 115.

    Mahlke C, Wallhausser-Franke E (2004) Evidence for tinnitus-related plasticity in the auditory and limbic system, demonstrated by arg3.1 and c-fos immunocytochemistry. Hear Res 195:17–34

    CAS  PubMed  Google Scholar 

  116. 116.

    Maison SF, Rosahl TW, Homanics GE et al (2006) Functional role of GABAergic innervation of the cochlea: phenotypic analysis of mice lacking GABA(A) receptor subunits alpha 1, alpha 2, alpha 5, alpha 6, beta 2, beta 3, or delta. J Neurosci 26:10315–10326

    CAS  PubMed  Google Scholar 

  117. 117.

    Makino S, Smith MA, Gold PW (1995) Increased expression of corticotropin-releasing hormone and vasopressin messenger ribonucleic acid (mRNA) in the hypothalamic paraventricular nucleus during repeated stress: association with reduction in glucocorticoid receptor mRNA levels. Endocrinology 136:3299–3309

    CAS  PubMed  Google Scholar 

  118. 118.

    Malgrange B, Rigo JM, Lefebvre PP et al (1997) Diazepam-insensitive GABAA receptors on postnatal spiral ganglion neurones in culture. Neuroreport 8:591–596

    CAS  PubMed  Google Scholar 

  119. 119.

    Matsumoto M, Higuchi K, Togashi H et al (2005) Early postnatal stress alters the 5-HTergic modulation to emotional stress at postadolescent periods of rats. Hippocampus 15:775–781

    CAS  PubMed  Google Scholar 

  120. 120.

    McEwen BS (1999) Stress and hippocampal plasticity. Annu Rev Neurosci 22:105–122

    CAS  PubMed  Google Scholar 

  121. 121.

    McEwen BS (2008) Central effects of stress hormones in health and disease: Understanding the protective and damaging effects of stress and stress mediators. Eur J Pharmacol 583:174–185

    CAS  PubMed  Google Scholar 

  122. 122.

    McEwen BS, Chattarji S (2004) Molecular mechanisms of neuroplasticity and pharmacological implications: the example of tianeptine. Eur Neuropsychopharmacol 14(Suppl 5):S497–S502

    CAS  PubMed  Google Scholar 

  123. 123.

    Meijer A (1985) Child psychiatric sequelae of maternal war stress. Acta Psychiatr Scand 72:505–511

    CAS  PubMed  Google Scholar 

  124. 124.

    Mesulam MM (1990) Large-scale neurocognitive networks and distributed processing for attention, language and memory. Ann Neurol 28:597–613

    CAS  PubMed  Google Scholar 

  125. 125.

    Meyer J, Gummer AW (2000) Physiologische Auswirkungen einer Zerstörung der Tip-Links kochleärer Haarsinneszellen Bedeutung für die lärminduzierte Schädigung des Gehörs. HNO 48:383–389

    CAS  PubMed  Google Scholar 

  126. 126.

    Meyer JH, Kruger S, Wilson AA et al (2001) Lower dopamine transporter binding potential in striatum during depression. Neuroreport 12:4121–4125

    CAS  PubMed  Google Scholar 

  127. 127.

    Miller AH (2008) Inflammation versus glucocorticoids as purveyors of pathology during stress: have we reached the tipping point? Biol Psychiatry 64:263–265

    PubMed  Google Scholar 

  128. 128.

    Mizoguchi K, Shoji H, Ikeda R et al (2008) Persistent depressive state after chronic stress in rats is accompanied by HPA axis dysregulation and reduced prefrontal dopaminergic neurotransmission. Pharmacol Biochem Behav 91:170–175

    CAS  PubMed  Google Scholar 

  129. 129.

    Muchnik C, Sahartov E, Peleg E et al (1992) Temporary threshold shift due to noise exposure in guinea pigs under emotional stress. Hear Res 58:101–106

    CAS  PubMed  Google Scholar 

  130. 130.

    Niess JH, Monnikes H, Dignass AU et al (2002) Review on the influence of stress on immune mediators, neuropeptides and hormones with relevance for inflammatory bowel disease. Digestion 65:131–140

    CAS  PubMed  Google Scholar 

  131. 131.

    Oh CK, Drescher MJ, Hatfield JS et al (1999) Selective expression of serotonin receptor transcripts in the mammalian cochlea and its subdivisions. Brain Res Mol Brain Res 70:135–140

    CAS  PubMed  Google Scholar 

  132. 132.

    Ohlsen KA, Baldwin DL, Nuttall AL et al (1991) Influence of topically applied adrenergic agents on cochlear blood flow. Circ Res 69:509–518

    CAS  PubMed  Google Scholar 

  133. 133.

    Ou XM, Storring JM, Kushwaha N et al (2001) Heterodimerization of mineralocorticoid and glucocorticoid receptors at a novel negative response element of the 5-HT1A receptor gene. J Biol Chem 276:14299–14307

    CAS  PubMed  Google Scholar 

  134. 134.

    Paz Z, Freeman S, Horowitz M et al (2004) Prior heat acclimation confers protection against noise-induced hearing loss. Audiol Neurootol 9:363–369

    PubMed  Google Scholar 

  135. 135.

    Pedrosa Gil F (2005) Aktuelles zur psychosomatischen ubd endokrinologischen Stressforschung. Dtsch Med Wochenschr 130:102–106

    Google Scholar 

  136. 136.

    Peng BG, Li QX, Ren TY et al (2004) Group I metabotropic glutamate receptors in spiral ganglion neurons contribute to excitatory neurotransmissions in the cochlea. Neuroscience 123:221–230

    CAS  PubMed  Google Scholar 

  137. 137.

    Porter RJ, Gallagher P, Watson S et al (2004) Corticosteroid-serotonin interactions in depression: a review of the human evidence. Psychopharmacology (Berl) 173:1–17

    Google Scholar 

  138. 138.

    Puel JL, Ruel J, Guitton M et al (2002) The inner hair cell synaptic complex: physiology, pharmacology and new therapeutic strategies. Audiol Neurootol 7:49–54

    CAS  PubMed  Google Scholar 

  139. 139.

    Puel JL, Saffiedine S, Gervais DC et al (1995) Synaptic regeneration and functional recovery after excitotoxic injury in the guinea pig cochlea. C R Acad Sci III 318:67–75

    CAS  PubMed  Google Scholar 

  140. 140.

    Pujol R, Puel JL (1999) Excitotoxicity, synaptic repair and functional recovery in the mammalian cochlea: a review of recent findings. Ann N Y Acad Sci 884:249–254

    CAS  PubMed  Google Scholar 

  141. 141.

    Raphael Y, Altschuler RA (2003) Structure and innervation of the cochlea. Brain Res Bull 60:397–422

    PubMed  Google Scholar 

  142. 142.

    Rarey KE, Curtis LM (1996) Receptors for glucocorticoids in the human inner ear. Otolaryngol Head Neck Surg 115:38–41

    CAS  PubMed  Google Scholar 

  143. 143.

    Rarey KE, Curtis LM, ten Cate WJ (1993) Tissue specific levels of glucocorticoid receptor within the rat inner ear. Hear Res 64:205–210

    CAS  PubMed  Google Scholar 

  144. 144.

    Rarey KE, Gerhardt KJ, Curtis LM et al (1995) Effect of stress on cochlear glucocorticoid protein: acoustic stress. Hear Res 82:135–138

    CAS  PubMed  Google Scholar 

  145. 145.

    Rasmusson AM, Shi L, Duman R (2002) Downregulation of BDNF mRNA in the hippocampal dentate gyrus after re-exposure to cues previously associated with footshock. Neuropsychopharmacology 27:133–142

    CAS  PubMed  Google Scholar 

  146. 146.

    Rothuizen J, Reul JM, Rijnberk A et al (1991) Aging and the hypothalamus-pituitary-adrenocortical axis, with special reference to the dog. Acta Endocrinol (Copenh) 125(Suppl 1):73–76

    Google Scholar 

  147. 147.

    Safieddine S, Eybalin M (1995) Expression of mGluR1 alpha mRNA receptor in rat and guinea pig cochlear neurons. Neuroreport 7:193–196

    CAS  PubMed  Google Scholar 

  148. 148.

    Sahley TL, Nodar RH (2001) A biochemical model of peripheral tinnitus. Hear Res 152:43–54

    CAS  PubMed  Google Scholar 

  149. 149.

    Salvinelli F, Casale M, Paparo F et al (2003) Subjective tinnitus, temporomandibular joint dysfunction and serotonin modulation of neural plasticity: causal or casual triad? Med Hypotheses 61:446–448

    CAS  PubMed  Google Scholar 

  150. 150.

    Sandi C, Davies HA, Cordero MI et al (2003) Rapid reversal of stress induced loss of synapses in CA3 of rat hippocampus following water maze training. Eur J Neurosci 17:2447–2456

    PubMed  Google Scholar 

  151. 151.

    Scaccianoce S, Matrisciano F, Del Bianco P et al (2003) Endogenous activation of group-II metabotropic glutamate receptors inhibits the hypothalamic-pituitary-adrenocortical axis. Neuropharmacology 44:555–561

    CAS  PubMed  Google Scholar 

  152. 152.

    Schaaf MJ, de Jong J, de Kloet ER et al (1998) Downregulation of BDNF mRNA and protein in the rat hippocampus by corticosterone. Brain Res 813:112–120

    CAS  PubMed  Google Scholar 

  153. 153.

    Schauenstein K, Rinner I, Felsner P et al (2001) Mens sana in corpore sano-and vice versa. The role of the autonomic nervous system in the immune-neuroendocrine dialogue. Int J Hyg Environ Health 204:75–79

    CAS  PubMed  Google Scholar 

  154. 154.

    Schell LM (1981) Environmental noise and human prenatal growth. Am J Phys Anthropol 56:63–70

    CAS  PubMed  Google Scholar 

  155. 155.

    Schrader LA, Tasker JG (1997) Presynaptic modulation by metabotropic glutamate receptors of excitatory and inhibitory synaptic inputs to hypothalamic magnocellular neurons. J Neurophysiol 77:527–536

    CAS  PubMed  Google Scholar 

  156. 156.

    Schulz KH, Gold S (2006) Psychische Belastung, Immunfunktionen und Krankheitsentwicklungen. Die psychoneuroimmunologische Perspektive. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 49:759–772

    PubMed  Google Scholar 

  157. 157.

    Seckl JR (1998) Physiologic programming of the fetus. Clin Perinatol 25:939–62, vii

    CAS  PubMed  Google Scholar 

  158. 158.

    Sheline YI, Gado MH, Kraemer HC (2003) Untreated depression and hippocampal volume loss. Am J Psychiatry 160:1516–1518

    PubMed  Google Scholar 

  159. 159.

    Shimazaki T, Ichimiya I, Suzuki M et al (2002) Localization of glucocorticoid receptors in the murine inner ear. Ann Otol Rhinol Laryngol 111:1133–1138

    PubMed  Google Scholar 

  160. 160.

    Simpson JJ, Davies WE (2000) A review of evidence in support of a role for 5-HT in the perception of tinnitus. Hear Res 145:1–7

    CAS  PubMed  Google Scholar 

  161. 161.

    Singewald N, Kaehler ST, Hemeida R et al (1998) Influence of excitatory amino acids on basal and sensory stimuli-induced release of 5-HT in the locus coeruleus. Br J Pharmacol 123:746–752

    CAS  PubMed  Google Scholar 

  162. 162.

    Sleeckx JP, Shea JJ, Peremans JM (1976) The mast cells of the inner ear. Acta Otorhinolaryngol Belg 30:443–449

    CAS  PubMed  Google Scholar 

  163. 163.

    Smith MA, Makino S, Kvetnansky R et al (1995) Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus. J Neurosci 15:1768–1777

    CAS  PubMed  Google Scholar 

  164. 164.

    Smoak KA, Cidlowski JA (2004) Mechanisms of glucocorticoid receptor signaling during inflammation. Mech Ageing Dev 125:697–706

    CAS  PubMed  Google Scholar 

  165. 165.

    So H, Kim H, Lee JH et al (2007) Cisplatin cytotoxicity of auditory cells requires secretions of proinflammatory cytokines via activation of ERK and NF-kappaB. J Assoc Res Otolaryngol 8:338–355

    PubMed  Google Scholar 

  166. 166.

    Sousa N, Cerqueira JJ, Almeida OF (2008) Corticosteroid receptors and neuroplasticity. Brain Res Rev 57:561–570

    CAS  PubMed  Google Scholar 

  167. 167.

    Sternberg EM (2001) Neuroendocrine regulation of autoimmune/inflammatory disease. J Endocrinol 169:429–435

    CAS  PubMed  Google Scholar 

  168. 168.

    Stobik C, Weber RK, Munte TF et al (2003) Psychosomatische Belastungsfaktoren bei kompensiertem und dekompensiertem Tinnitus. Psychother Psychosom Med Psychol 53:344–352

    PubMed  Google Scholar 

  169. 169.

    Stott DH (1973) Follow-up study from birth of the effects of prenatal stresses. Dev Med Child Neurol 15:770–787

    CAS  PubMed  Article  Google Scholar 

  170. 170.

    Ströhle A (2003) Die Neuroendokrinologie von Stress und die Pathophysiologie und Therapie von Depression und Angst. Nervenarzt 74:279–291

    PubMed  Google Scholar 

  171. 171.

    Tahera Y, Meltser I, Johansson P et al (2006) NF-kappaB mediated glucocorticoid response in the inner ear after acoustic trauma. J Neurosci Res 83:1066–1076

    CAS  PubMed  Google Scholar 

  172. 172.

    Takahashi K, Kusakari J, Kimura S et al (1996) The effect of methylprednisolone on acoustic trauma. Acta Otolaryngol 116:209–212

    CAS  PubMed  Google Scholar 

  173. 173.

    Takemura K, Komeda M, Yagi M et al (2004) Direct inner ear infusion of dexamethasone attenuates noise-induced trauma in guinea pig. Hear Res 196:58–68

    CAS  PubMed  Google Scholar 

  174. 174.

    Tan J, Ruttiger L, Panford-Walsh R et al (2007) Tinnitus behavior and hearing function correlate with the reciprocal expression patterns of BDNF and Arg3.1/arc in auditory neurons following acoustic trauma. Neuroscience 145:715–726

    CAS  PubMed  Google Scholar 

  175. 175.

    Tapia-Arancibia L, Rage F, Givalois L et al (2004) Physiology of BDNF: focus on hypothalamic function. Front Neuroendocrinol 25:77–107

    CAS  PubMed  Google Scholar 

  176. 176.

    Tausk F, Elenkov I, Moynihan J (2008) Psychoneuroimmunology. Dermatol Ther 21:22–31

    PubMed  Google Scholar 

  177. 177.

    Thai-Van H, Bounaix MJ, Fraysse B (2001) Meniere’s disease: pathophysiology and treatment. Drugs 61:1089–1102

    CAS  PubMed  Google Scholar 

  178. 178.

    Thompson JL, Pogue-Geile MF, Grace AA (2004) Developmental pathology, dopamine and stress: a model for the age of onset of schizophrenia symptoms. Schizophr Bull 30:875–900

    PubMed  Google Scholar 

  179. 179.

    Thornton AR, Jarvis SJ (2008) Auditory brainstem response findings in hypothyroid and hyperthyroid disease. Clin Neurophysiol 119:786–790

    CAS  PubMed  Google Scholar 

  180. 180.

    Tornabene SV, Sato K, Pham L et al (2006) Immune cell recruitment following acoustic trauma. Hear Res 222:115–124

    CAS  PubMed  Google Scholar 

  181. 181.

    Tsigos C, Chrousos GP (2002) Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress. J Psychosom Res 53:865–871

    PubMed  Google Scholar 

  182. 182.

    Uziel A, Legrand C, Rabie A (1985) Corrective effects of thyroxine on cochlear abnormalities induced by congenital hypothyroidism in the rat. I. Morphological study. Brain Res 351:111–122

    CAS  PubMed  Google Scholar 

  183. 183.

    van Cruijsen N, Dullaart RP, Wit HP et al (2005) Analysis of cortisol and other stress-related hormones in patients with Meniere’s disease. Otol Neurotol 26:1214–1219

    Google Scholar 

  184. 184.

    van den Pol AN, Wuarin JP, Dudek FE (1990) Glutamate, the dominant excitatory transmitter in neuroendocrine regulation. Science 250:1276–1278

    Google Scholar 

  185. 185.

    Vander AJ, Sherman JH, Luciano DS (1994) Human physiology. McGraw-Hill, New York

  186. 186.

    Vicente-Torres A, Bartolome MV, Carricondo F et al (1998) HPLC detection of serotonin within the rat cochlea. Neuroreport 9:3699–3701

    CAS  PubMed  Google Scholar 

  187. 187.

    Vicente-Torres MA, Davila D, Bartolome MV et al (2003) Biochemical evidence for the presence of serotonin transporters in the rat cochlea. Hear Res 182:43–47

    CAS  PubMed  Google Scholar 

  188. 188.

    Wallhausser-Franke E, Mahlke C, Oliva R et al (2003) Expression of c-fos in auditory and non-auditory brain regions of the gerbil after manipulations that induce tinnitus. Exp Brain Res 153:649–654

    CAS  PubMed  Google Scholar 

  189. 189.

    Wang Y, Liberman MC (2002) Restraint stress and protection from acoustic injury in mice. Hear Res 165:96–102

    PubMed  Google Scholar 

  190. 190.

    Weber T, Zimmermann U, Winter H et al (2002) Thyroid hormone is a critical determinant for the regulation of the cochlear motor protein prestin. Proc Natl Acad Sci U S A 99:2901–2906

    CAS  PubMed  Google Scholar 

  191. 191.

    Weinstock M, Poltyrev T, Schorer-Apelbaum D et al (1998) Effect of prenatal stress on plasma corticosterone and catecholamines in response to footshock in rats. Physiol Behav 64:439–444

    CAS  PubMed  Google Scholar 

  192. 192.

    Weiss SJ (2007) Neurobiological alterations associated with traumatic stress. Perspect Psychiatr Care 43:114–122

    PubMed  Google Scholar 

  193. 193.

    Winter H, Braig C, Zimmermann U et al (2006) Thyroid hormone receptors TRalpha1 and TRbeta differentially regulate gene expression of Kcnq4 and prestin during final differentiation of outer hair cells. J Cell Sci 119:2975–2984

    CAS  PubMed  Google Scholar 

  194. 194.

    Woolley CS, Gould E, McEwen BS (1990) Exposure to excess glucocorticoids alters dendritic morphology of adult hippocampal pyramidal neurons. Brain Res 531:225–231

    CAS  PubMed  Google Scholar 

  195. 195.

    Yamori Y, Matsumoto M, Yamabe H et al (1969) Augmentation of spontaneous hypertension by chronic stress in rats. Jpn Circ J 33:399–409

    CAS  PubMed  Google Scholar 

  196. 196.

    Yoshida N, Kristiansen A, Liberman MC (1999) Heat stress and protection from permanent acoustic injury in mice. J Neurosci 19:10116–10124

    CAS  PubMed  Google Scholar 

  197. 197.

    Zeise ML, Teschemacher A, Arriagada J et al (1992) Corticosterone reduces synaptic inhibition in rat hippocampal and neocortical neurons invitro. J Neuroendocrinol 4:107–112

    CAS  Google Scholar 

  198. 198.

    Zhou J, Cidlowski JA (2005) The human glucocorticoid receptor: one gene, multiple proteins and diverse responses. Steroids 70:407–417

    CAS  PubMed  Google Scholar 

  199. 199.

    Zuo J, Curtis LM, Yao X et al (1995) Glucocorticoid receptor expression in the postnatal rat cochlea. Hear Res 87:220–227

    CAS  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Affiliations

Authors

Corresponding author

Correspondence to PD Dr. B. Mazurek.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mazurek, B., Stöver, T., Haupt, H. et al. Bedeutung von Stress. HNO 58, 162–172 (2010). https://doi.org/10.1007/s00106-009-2001-5

Download citation

Schlüsselwörter

  • Stress
  • Auditorisches System
  • Tinnitus
  • Hyperakusis
  • Kortisol

Keywords

  • Stress
  • Auditory System
  • Tinnitus
  • Hyperacusis
  • Cortisol