Skip to main content
Log in

Zentral-auditorische Implantate

Central auditory prosthesis

  • Leitthema
  • Published:
HNO Aims and scope Submit manuscript

Zusammenfassung

Taube Patienten mit einer cochleären Schwerhörigkeit können heute durch ein Kochleaimplantat, das die Hörnervenfasern stimuliert, rehabilitiert werden. Doch Patienten mit einer Schädigung des Hörnervs können von einem Kochleaimplantat nicht profitieren. Nur etwa 1% aller tauben Patienten weisen eine neurale Schwerhörigkeit auf, die meisten leiden an einer Neurofibromatose Typ 2 (NF2). Aufgrund bilateraler Akustikusneurinome und der erforderlichen chirurgischen Entfernung kommt es zu einer neuralen Taubheit beidseits. Für die Rehabilitation bietet sich das auditorische Hirnstammimplantat an, das mit einer Oberflächenelektrode den Nucleus cochlearis am Hirnstamm stimuliert. Obwohl das Hirnstammimplantat (ABI) die Wahrnehmung von Umweltgeräuschen ermöglicht und das Lippenlesen verbessert, können nur wenige Patienten ein offenes Sprachverstehen erreichen. Auf der Suche nach alternativen Verfahren wurde in Zusammenarbeit mit Cochlear Ltd. (Australien) ein auditorisches Mittelhirnimplantat („auditory midbrain implant“, AMI) entwickelt, das mit einer penetrierenden Elektrode den Colliculus inferior im Mittelhirn stimuliert. Der Colliculus inferior bietet den Zugang zur neuronalen Projektion, wie sie für die Sprachwahrnehmung und die dafür erforderliche spektrale Information notwendig ist. Der Beitrag stellt den Stand zentraler auditorischer Prothesen im Hinblick auf Technologie, chirurgische Technik und Hörergebnisse dar. Zusätzlich wird auf den konzeptionellen Hintergrund des ABI und des AMI eingegangen.

Abstract

Deaf patients with severe sensory hearing loss can benefit from a cochlear implant (CI), which stimulates the auditory nerve fibers. However, patients who do not have an intact auditory nerve cannot benefit from a CI. The majority of these patients are neurofibromatosis type 2 (NF2) patients who developed neural deafness due to growth or surgical removal of a bilateral acoustic neuroma. The only current solution is the auditory brainstem implant (ABI), which stimulates the surface of the cochlear nucleus in the brainstem. Although the ABI provides improvement in environmental awareness and lip-reading capabilities, only a few NF2 patients have achieved some limited open set speech perception. In the search for alternative procedures our research group in collaboration with Cochlear Ltd. (Australia) developed a human prototype auditory midbrain implant (AMI), which is designed to electrically stimulate the inferior colliculus (IC). The IC has the potential as a new target for an auditory prosthesis as it provides access to neural projections necessary for speech perception as well as a systematic map of spectral information. In this paper the present status of research and development in the field of central auditory prostheses is presented with respect to technology, surgical technique and hearing results as well as the background concepts of ABI and AMI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8
Abb. 9
Abb. 10
Abb. 11
Abb. 12
Abb. 13
Abb. 14
Abb. 15
Abb. 16
Abb. 17
Abb. 18
Abb. 19
Abb. 20
Abb. 21

Literatur

  1. Adams JS, Hasenstab MS, Pippin GW et al (2004) Telephone use and understanding in patients with cochlear implants. Ear Nose Throat J 83:96, 9–100, 2–3

    PubMed  Google Scholar 

  2. Boenninghaus HG, Lenarz T (2007) HNO. Springer, Berlin Heidelberg New York Tokio, 007:399

  3. Colletti V, Shannon RV (2005) Open set speech perception with auditory brainstem implant? Laryngoscope 115:1974–1978, doi:10.1097/01.mlg.0000178327.42926.ec

  4. Evans DG, Huson SM, Donnai D et al (1992) A genetic study of type 2 neurofibromatosis in the United Kingdom. I. Prevalence, mutation rate, fitness and confirmation ofmaternal transmission effect on severity. J Med Genet 29:841–846, doi:10.1136/jmg.29.12.841

    Google Scholar 

  5. Geniec P, Morest DK (1971) The neuronal architecture of the human posterior colliculus. A study with the Golgi method. Acta Otolaryngol Suppl 295:1–33

    PubMed  CAS  Google Scholar 

  6. Haberler C, Alesch F, Mazal PR et al (2000) No tissue damage by chronic deep brain stimulation in Parkinson’s disease. Ann Neurol 48:372–376, doi:10.1002/1531-8249(200009)48:3<372::AID-ANA12>3.0.CO;2-0

    Google Scholar 

  7. Hitselberger WE, House WF, Edgerton BJ et al (1984) Cochlear nucleus implants. Otolaryngol Head Neck Surg 92:52–54

    PubMed  CAS  Google Scholar 

  8. Lenarz M, Lim HH, Lenarz T et al (2007) Auditory midbrain implant: Histomorphological effects of long-term implantation and electrical stimulation of a new DBS array. Otol Neurotol 28:1045–1052 doi:10.1097/MAO.0b013e318159e74f

    Google Scholar 

  9. Lenarz M, Lim HH, Patrick JF et al (2006) Electrophysiological validation of a human prototype auditory midbrain implant in a guinea pig model. J Assoc Res Otolaryngol 7:383–398, doi:10.1007/s10162-006-0056-5

    Google Scholar 

  10. Lenarz M, Matthies C, Lesinski-Schiedat A et al (2002) Auditory brainstem implant part II: subjective assessment of functional outcome. Otol Neurotol 23:694–697, doi:10.1097/00129492-200209000-00015

    Google Scholar 

  11. Lenarz T, Lim HH, Reuter G et al (2006) The auditory midbrain implant: a new auditory prosthesis for neural deafness-concept and device description. Otol Neurotol 27:838–843, doi:10.1097/01.mao.0000232010.01116.e9

  12. Lenarz T, Moshrefi M, Matthies C et al (2001) Auditory brainstem implant: part I. Auditory performance and its evolution over time. Otol Neurotol 22:823–833, doi:10.1097/00129492-200111000-00019

    Google Scholar 

  13. Lenarz T (1998) Cochlear implants: selection criteria and shifting borders. Acta Otorhinolaryngol Belg 52:183–199

    PubMed  CAS  Google Scholar 

  14. Lenarz T (1997) Cochlear implants: what can be achieved? Am J Otol 18:S2–S3

    PubMed  CAS  Google Scholar 

  15. Lim HH, Lenarz T, Joseph G et al (2008) Effects of phase duration and pulse rate on loudness and pitch percepts in the first auditory midbrain implant patients: Comparison to cochlear implant and auditory brainstem implant results. Neuroscience 154(1):370–380. Invited paper, doi:10.1016/j.neuroscience.2008.02.041

    Google Scholar 

  16. Lim HH, Lenarz T, Anderson DJ et al. (2008) The auditory midbrain implant: Effects of electrode location. Hear Res 242:74–85, doi:10.1016/j.heares.2008.02.003

    Google Scholar 

  17. Lim HH, Lenarz T, Joseph G et al. (2007) Electrical stimulation of the midbrain for hearing restoration: Insight into the functional organization of the human central auditory system. J Neurosci 27:13541–13551, doi:10.1523/JNEUROSCI.3123-07.2007

    Google Scholar 

  18. Lim HH, Anderson DJ (2007) Spatially distinct functional output regions within the central nucleus of the inferior colliculus: Implications for an auditory midbrain implant. J Neurosci 27:8733–8743, doi:10.1523/JNEUROSCI.5127-06.2007

    Google Scholar 

  19. Loftus WC, Bishop DC, Saint Marie RL et al (2004) Organization of binaural excitatory and inhibitory inputs to the inferior colliculus from the superior olive. J Comp Neurol 472:330–344, doi:10.1002/cne.20070

    Google Scholar 

  20. McCreery DB, Yuen TG, Bullara LA (2000) Chronic microstimulation in the feline ventral cochlear nucleus: Physiologic and histologic effects. Hear Res 149:223–238, doi:10.1016/S0378-5955(00)00190-8

    Google Scholar 

  21. McCreery DB (2008) Cochlear nucleus auditory prostheses. Hear Res 242:64–73, doi:10.1016/j.heares.2007.11.014

    Google Scholar 

  22. Moore JK (1987) The human auditory brain stem: a comparative view. Hear Res 29:1–32, doi:10.1016/0378-5955(87)90202–90204

    Google Scholar 

  23. Oliver DL (2005) Neuronal organization in the inferior colliculus In: Winer JA, Schreiner CE (eds) The Inferior Colliculus. Springer Science+Business Media, Inc., New York, pp 69–114

  24. Oliver DL (1987) Projections to the inferior colliculus from the anteroventral cochlear nucleus in the cat: possible substrates for binaural interaction. J Comp Neurol 264:24–46, doi:10.1002/cne.902640104

    Google Scholar 

  25. Otto SR, Brackmann DE, Hitselberger WE et al (2002) Multichannel auditory brainstem implant: update on performance in 61 patients. J Neurosurg 96:1063–1071

    Article  PubMed  Google Scholar 

  26. Saldana E, Merchan MA (2005) Intrinsic and commissural connections of the inferior colliculus. In: Winer JA, Schreiner CE (eds) The inferior colliculus. Springer, New York, pp 155–181

  27. Samii A, Lenarz M, Majdani O et al (2007) Auditory midbrain implant: a combined approach for vestibular schwannoma surgery and device implantation. Otol Neurotol 28:31–38, doi:10.1097/01.mao.0000247819.16325.7d

  28. Schreiner CE, Langner G (1997) Laminar fine structure of frequency organization in auditory midbrain. Nature 388:383–386, doi:10.1038/41106

    Google Scholar 

  29. Winer JA (2005) Three systems of descending projections to the inferior colliculus. In: Winer JA, Schreiner CE (eds) The inferior colliculus. Springer, New York, pp 231–247

  30. Yost WA (2000) Fundamentals of hearing: An introduction. Academic Press, New York

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Lenarz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lenarz, T., Lim, H., Joseph, G. et al. Zentral-auditorische Implantate. HNO 57, 551–562 (2009). https://doi.org/10.1007/s00106-009-1944-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00106-009-1944-x

Schlüsselwörter

Keywords

Navigation