Skip to main content
Log in

Hören mit kombinierter elektrischer und akustischer Stimulation

Hearing with combined electric acoustic stimulation

  • Leitthema
  • Published:
HNO Aims and scope Submit manuscript

Zusammenfassung

Patienten mit ausreichendem Tieftongehör nach Kochleaimplantation können elektrisch erzeugte Reizmuster und akustische Reize derart integrieren, dass sich die Wahrnehmung von Sprache, v. a. im Störgeräusch, und die Musikabbildung deutlich verbessern, was auf eine Übertragung der „Feinstruktur“ des Signals durch genauere Abbildung der Grundfrequenz (F0) über den akustischen Reiz zurückgeführt wird. Prinzipbedingt erfolgt die Abbildung von Tonhöhen oder Melodiekonturen mit bisher verwendeten Kochleaimplantaten (CI) nur grob; Tonhöhenunterschiede werden erst bei sehr großen Intervallen erkannt. Man nimmt an, dass die durch den akustischen Informationskanal übertragene Tonhöheninformation den CI-Träger in die Lage versetzt, sicherer zwischen Sprach- und Störsignal zu unterscheiden. Die Verfolgung eines einzelnen Sprechers in einem Gewirr aus verschiedenen Stimmen gelingt besser, wenn als Trennungsmerkmal die Grundfrequenzkontur der Stimme zur Verfügung steht. Eine besondere Herausforderung besteht in der Schonung der Hörfunktion im zu operierenden Ohr. Die Entwicklung besonders flexibler und dünner Elektrodenträger sowie die Anwendung einer das Innenohr minimal traumatisierenden Operationstechnik ermöglichen bei fast allen Patienten einen weitgehenden Hörerhalt.

Abstract

After cochlear implantation, individuals with sufficient residual hearing in the lower frequency region are able to successfully combine acoustic and electrical stimulation patterns to improve speech perception, especially in noise, and to improve music appraisal as well. These improvements occur through enhanced transmission of fine structure information by more accurate mapping of the fundamental frequency contour through acoustic hearing. In current cochlear implant systems, the transfer of frequency and melodic contour is very coarse, and the correct detection of pitch contour requires large frequency differences. It is assumed that the acoustically transferred part of the signal enables the cochlear implant recipient to better segregate between speech signals and interfering sounds. The detection and following of a speech signal emitted by a single talker in a multitalker babble situation is improved when fundamental frequencies as grouping cues are present. The preservation of hearing in the implanted ear must be considered a major surgical challenge. The development of very flexible and soft electrode carriers in combination with surgical approaches that minimally traumatize the inner ear enable hearing preservation in nearly all cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Boggess WJM, Baker JEMC, Balkany TJM (1989) Loss of residual hearing after cochlear implantation. Laryngoscope 99:1002–1005

    Article  PubMed  CAS  Google Scholar 

  2. Ruh S, Battmer RD, Strauß-Schier A, Lenarz T (1997) Cochlear implant in severely hearing impaired patients. Laryngorhinootol 76:347–350

    Article  CAS  Google Scholar 

  3. Hodges A, Schloffman J, Balkany T (1997) Conservation of residual hearing with cochlear implantation. Am J Otol 18:179–183

    Article  PubMed  CAS  Google Scholar 

  4. Armstrong M, Pegg P, James C, Blamey P (1997) Speech perception in noise with implant and hearing aid. Am J Otol 18:S140–S141

    Article  PubMed  CAS  Google Scholar 

  5. Baumann U (2000) Sprachverständnis im Störgeräusch mit Cochlea Implantat und Hörgerät. In: Sill A (Hrsg) Fortschritte der Akustik – DAGA 2000. DEGA e. V., Oldenburg, S 268–269

  6. Seeber BU, Fastl H, Baumann U (2001) Akustische Lokalisation mit Cochlea Implantat und Richtmikrofon-Hörgerät. In: von Estorff O (Hrsg) Fortschritte der Akustik – DAGA 2001. DEGA e. V., Oldenburg, S 167–168

  7. Seeber BU, Baumann U, Fastl H (2004) Localization ability with bimodal hearing aids and bilateral cochlear implants. JASA 116:1698–1709

    Google Scholar 

  8. Von Ilberg C, Kiefer J, Tillein J et al (1999) Electric-acoustic stimulation of the auditory system - New technology for severe hearing loss. ORL J Otorhinolaryngol Relat Spec 61:334–340

    Google Scholar 

  9. Gjuric M, Schneider W, Buhr W et al (1997) Experimental sensorineural hearing loss following drill-induced ossicular chain injury. Acta Otolaryngol 117:497–500

    Article  PubMed  CAS  Google Scholar 

  10. Pau HW, Just T, Bornitz M et al (2007) Noise exposure of the inner ear during drilling a cochleostomy for cochlear implantation. Laryngoscope 117:535–540

    Article  PubMed  Google Scholar 

  11. Lehnhardt E (1993) Specific surgical aspects of cochlear-implant - soft surgery. HNO 41:356–359

    PubMed  CAS  Google Scholar 

  12. Adunka O, Unkelbach MH, Mack MG et al (2005) Predicting basal cochlear length for electric-acoustic stimulation. Arch Otolaryngol Head Neck Surg 131:488–492

    Article  PubMed  Google Scholar 

  13. Kiefer J, Gstoettner W, Baumgartner W et al (2004) Conservation of low-frequency hearing in cochlear implantation. Acta Otolaryngol 124:272–280

    Article  PubMed  Google Scholar 

  14. Skarzynski H, Lorens A, Piotrowska A (2003) A new method of partial deafness treatment. Med Sci Monit 9:CS20–CS24

    PubMed  Google Scholar 

  15. Adunka O, Unkelbach MH, Mack M et al (2004) Cochlear implantation via the round window membrane minimizes trauma to cochlear structures: A histologically controlled insertion study. Acta Otolaryngol 124:807–812

    Article  PubMed  Google Scholar 

  16. Ye Q, Tillein J, Hartmann R et al (2007) Application of a corticosteroid (Triamcinolon) protects inner ear function after surgical intervention. Ear Hear 28:361–369

    Article  PubMed  Google Scholar 

  17. Adunka O, Kiefer J, Unkelbach MH et al (2004) Development and evaluation of an improved cochlear implant electrode design for electric acoustic stimulation. Laryngoscope 114:1237–1241

    Article  PubMed  Google Scholar 

  18. James C, Albegger K, Battmer R et al (2005) Preservation of residual hearing with cochlear implantation: How and why. Acta Otolaryngol 125:481–491

    Article  PubMed  Google Scholar 

  19. Gantz BJ, Turner C, Gfeller KE, Lowder MW (2005) Preservation of hearing in cochlear implant surgery: advantages of combined electrical and acoustical speech processing. Laryngoscope 115:796–802

    Article  PubMed  Google Scholar 

  20. Fitzgerald MB, Sagi E, Jackson M et al (2008) Reimplantation of hybrid cochlear implant users with a full-length electrode after loss of residual hearing. Otol Neurootol 29:168–173

    Article  Google Scholar 

  21. Dunn CC, Marciniak BA (2009) Options for preserving residual hearing with a cochlear implant. Audiology online. http://www.audiologyonline.com/articles/article_detail.asp?article_id=2167, Stand: 23.04.2009

  22. Lenarz T, Stover T, Buechner A et al (2006) Temporal bone results and hearing preservation with a new straight electrode. Audiol Neurootol 11(Suppl 1):34–41

    Article  PubMed  Google Scholar 

  23. Helbig S, Baumann U, Settevendemie C et al (2009) Cochlear reimplantation in patients using electric-acoustic stimulation. ORL (submitted)

  24. Scarpidis U, Madnani D, Shoemaker C et al (2003) Arrest of apoptosis in auditory neurons: Implications for sensorineural preservation in cochlear implantation. Otol Neurotol 24:409–417

    Article  PubMed  Google Scholar 

  25. Staecker H, Brough DE, Praetorius M, Baker K (2004) Drug delivery to the inner ear using gene therapy. Otolaryngol Clin North Am 37:1091–1108

    Article  PubMed  Google Scholar 

  26. Helbig S, Baumann U, Helbig M et al (2008) A new combined speech processor for electric and acoustic stimulation – eight months experience. ORL J Otorhinolaryngol Relat Spec 70:359–365

    PubMed  Google Scholar 

  27. Vermeire K, Anderson I, Flynn M, De Heyning PV (2008) The influence of different speech processor and hearing aid settings on speech perception outcomes in electric acoustic stimulation patients. Ear Hear 29:76–86

    PubMed  Google Scholar 

  28. Moore BCJ (2004) Dead regions in the cochlea: conceptual foundations, diagnosis, and clinical applications. Ear Hear 25:98–116

    Article  PubMed  Google Scholar 

  29. Kiefer J, Pok M, Adunka O et al (2005) Combined electric and acoustic stimulation of the auditory system: Results of a clinical study. Audiol Neurootol 10:134–144

    Article  PubMed  Google Scholar 

  30. Baumann U (2009) Cochlea Implantat und EAS Simulation – Hörbeispiele mit Sinuston-Vokodern. http://www.kgu.de/index.php?id=1551, Stand: 27.03.2009

  31. Chang JE, Bai JY, Zeng FG (2006) Unintelligible low-frequency sound enhances simulated cochlear-implant speech recognition in noise. IEEE Trans Biomed Eng 53:2598–2601

    Article  PubMed  Google Scholar 

  32. Gifford RH, Dorman MF, Spahr AJ et al (2008) Hearing preservation surgery: Psychophysical estimates of cochlear damage in recipients of a short electrode array. J Acoust Soc Am 124:2164–2173

    Article  PubMed  Google Scholar 

  33. Gstoettner WK, Helbig S, Maier N et al (2006) Ipsilateral electric acoustic stimulation of the auditory system: results of long-term hearing preservation. Audiol Neurootol 11(Suppl 1):49–56

    Article  PubMed  Google Scholar 

  34. Lorens A, Polak M, Piotrowska A, Skarzynski H (2008) Outcomes of treatment of partial deafness with cochlear implantation: A DUET study. Laryngoscope 118:288–294

    Article  PubMed  Google Scholar 

  35. Skarzynski H, Lorens A, Piotrowska A, Anderson I (2007) Partial deafness cochlear implantation in children. International Journal of Pediatric Otorhinolaryngology 71:1407–1413

    Article  PubMed  Google Scholar 

  36. Talbot KN, Hartley DEH (2008) Combined electro-acoustic stimulation: a beneficial union? Clin Otolaryngol 33:536–545

    Article  PubMed  CAS  Google Scholar 

  37. Helbig S, Baumann U (2009) Acceptance and fitting of the DUET device - a combined speech processor for electric-acoustic Stimulation. ORL (in press)

  38. Gstöttner W, Settevendemie C, Helbig S et al (2009) A new electrode for residual hearing preservation in cochlear implantation: First clinical results. Acta Otolaryngol (in press)

  39. Gifford RH, Dorman MF, Spahr AJ, McKarns SA (2007) Effect of digital frequency compression (DFC) on speech recognition in candidates for combined electric and acoustic stimulation (EAS). J Speech Lang Hear Res 50:1194–1202

    Article  PubMed  Google Scholar 

Download references

Danksagung

Die Autoren bedanken sich bei Herrn Dipl.-Ing. Tobias Rader für die Aufbereitung der Abbildungen und die Einstellung der http://www-Seiten mit den EAS-Demonstrationen sowie bei den Herstellern MED-EL (Innsbruck) und Cochlear (Hannover) für die Bereitstellung der Abbildungen.

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Baumann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baumann, U., Helbig, S. Hören mit kombinierter elektrischer und akustischer Stimulation. HNO 57, 542–550 (2009). https://doi.org/10.1007/s00106-009-1923-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00106-009-1923-2

Schlüsselwörter

Keywords

Navigation