Skip to main content
Log in

Epigenetische Aspekte bei Karzinomen der Kopf-Hals-Region

Epigenetic aspects in carcinomas of the head and neck

  • Leitthema
  • Published:
HNO Aims and scope Submit manuscript

Zusammenfassung

Plattenepithelkarzinome der Kopf-Hals-Region (HNSCC) zählen seit Jahren zu den weltweit häufigsten Krebsarten. Trotz vieler Bemühungen hat sich das 5-Jahres-Überleben bei Patienten mit HNSCC kaum verbessert. Um Fortschritte zu erzielen, ist es notwendig, die der Erkrankung zugrunde liegenden biologischen Prozesse besser zu verstehen. Neben den bekannten genetischen Veränderungen haben molekular-zytogenetische Untersuchungen bei HNSCC gezeigt, dass es weitere Veränderungen gibt, die mit Vermehrung und Verlust chromosomaler Bereiche einhergehen, für die jedoch die krankheitsverursachenden Gene bisher nicht identifiziert wurden. Darüber hinaus haben jüngste Forschungsergebnisse verdeutlicht, dass epigenetische Modifikationen wie die DNA-Methylierung eine wichtige Rolle spielen. So konnte gezeigt werden, dass bei HNSCC eine Reihe von Genen (z. B. das Tumorsuppressorgen CDKN2A sowie DAPK1, MGMT, TIMP3, TCF21, und C/EBPα) hypermethylierte Bereiche in regulatorischen DNA-Sequenzen aufweisen, wodurch ihre Expression verringert oder unterbunden wird. Die Hypermethylierung solcher Gene könnte als Biomarker zur Früherkennung von HNSCC genutzt werden und nicht zuletzt dadurch zur Verbesserung von Prävention und Therapieerfolg beitragen.

Abstract

For years, head and neck squamous cell carcinomas (HNSCC) have been among the leading cancers worldwide. Despite considerable efforts, the 5-year survival rate for HNSCC has not changed significantly. To improve this situation, it is necessary to understand the fundamental biological processes leading to the disease and its progression. In addition to known genetic changes in HNSCC, molecular cytogenetic investigations have identified chromosomal regions of gains and losses, but many of the responsible candidate genes have yet to be identified. Furthermore, recent results indicate the importance of epigenetic modifications in HNSCC, such as DNA methylation. Several genes, including the tumor suppressor CDKN2A and other candidates such as DAPK1, MGMT, TIMP3, TCF21, and C/EBPα, have been found to harbor hypermethylated regulatory sequences that lead to reduced expression or gene silencing. Hypermethylation in such genes could be used not only as biomarkers for the early detection of HNSCC but also to improve prevention strategies and therapy outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. International Human Genome Sequencing Consortium (2004) Finishing the euchromatic sequence of the human genome. Nature 431: 931–945

    Google Scholar 

  2. Aarstad HJ, Aarstad AK, Birkhaug EJ et al. (2003) The personality and quality of life in HNSCC patients following treatment. Eur J Cancer 39: 1852–1860

    PubMed  CAS  Google Scholar 

  3. Alvarez-Garcia I, Miska EA (2005) MicroRNA functions in animal development and human disease. Development 132: 4653–4662

    PubMed  CAS  Google Scholar 

  4. Barreto G, Schafer A, Marhold J et al. (2007) Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature 445: 671–675

    PubMed  CAS  Google Scholar 

  5. Beder LB, Gunduz M, Ouchida M et al. (2003) Genome-wide analyses on loss of heterozygosity in head and neck squamous cell carcinomas. Lab Invest 83: 99–105

    PubMed  Google Scholar 

  6. Bennett KL, Hackanson B, Smith LT et al. (2007) Tumor suppressor activity of CCAAT/enhancer binding protein alpha is epigenetically down-regulated in head and neck squamous cell carcinoma. Cancer Res 67: 4657–4664

    PubMed  CAS  Google Scholar 

  7. Bestor TH, Verdine GL (1994) DNA methyltransferases. Curr Opin Cell Biol 6: 380–389

    PubMed  CAS  Google Scholar 

  8. Bird A, Taggart M, Frommer M et al. (1985) A fraction of the mouse genome that is derived from islands of nonmethylated, CpG-rich DNA. Cell 40: 91–99

    PubMed  CAS  Google Scholar 

  9. Bird AP (1986) CpG-rich islands and the function of DNA methylation. Nature 321: 209–213

    PubMed  CAS  Google Scholar 

  10. Birkhaug EJ, Aarstad HJ, Aarstad AK et al. (2002) Relation between mood, social support and the quality of life in patients with laryngectomies. Eur Arch Otorhinolaryngol 259: 197–204

    PubMed  CAS  Google Scholar 

  11. Blot WJ, Mclaughlin JK, Winn DM et al. (1988) Smoking and drinking in relation to oral and pharyngeal cancer. Cancer Res 48: 3282–3287

    PubMed  CAS  Google Scholar 

  12. Bockmuhl U, Wolf G, Schmidt S et al. (1998) Genomic alterations associated with malignancy in head and neck cancer. Head Neck 20: 145–151

    PubMed  CAS  Google Scholar 

  13. Boring CC, Squires TS, Tong T (1991) Cancer statistics, 1991. Bol Asoc Med P R 83: 225–242

    PubMed  CAS  Google Scholar 

  14. Brena RM, Huang TH, Plass C (2006) Quantitative assessment of DNA methylation: potential applications for disease diagnosis, classification, and prognosis in clinical settings. J Mol Med 84: 1–13

    Google Scholar 

  15. Brennecke J, Stark A, Russell RB et al. (2005) Principles of microRNA-target recognition. PLoS Biol 3: e85

    PubMed  Google Scholar 

  16. Cabelguenne A, Loriot MA, Stucker I et al. (2001) Glutathione-associated enzymes in head and neck squamous cell carcinoma and response to cisplatin-based neoadjuvant chemotherapy. Int J Cancer 93: 725–730

    PubMed  CAS  Google Scholar 

  17. Cai WW, Mao JH, Chow CW et al. (2002) Genome-wide detection of chromosomal imbalances in tumors using BAC microarrays. Nat Biotechnol 20: 393–396

    PubMed  CAS  Google Scholar 

  18. Califano J, Van Der Riet P, Westra W et al. (1996) Genetic progression model for head and neck cancer: implications for field cancerization. Cancer Res 56: 2488–2492

    PubMed  CAS  Google Scholar 

  19. Calin GA, Ferracin M, Cimmino A et al. (2005) A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 353: 1793–1801

    PubMed  CAS  Google Scholar 

  20. Carvalho AL, Chuang A, Jiang WW et al. (2006) Deleted in colorectal cancer is a putative conditional tumor-suppressor gene inactivated by promoter hypermethylation in head and neck squamous cell carcinoma. Cancer Res 66: 9401–9407

    PubMed  CAS  Google Scholar 

  21. Carvalho AL, Jeronimo C, Kim MM et al. (2008) Evaluation of promoter hypermethylation detection in body fluids as a screening/diagnosis tool for head and neck squamous cell carcinoma. Clin Cancer Res 14: 97–107

    PubMed  CAS  Google Scholar 

  22. Chen CZ (2005) MicroRNAs as oncogenes and tumor suppressors. N Engl J Med 353: 1768–1771

    PubMed  CAS  Google Scholar 

  23. Clark SJ, Harrison J, Paul CL et al. (1994) High sensitivity mapping of methylated cytosines. Nucleic Acids Res 22: 2990–2997

    PubMed  CAS  Google Scholar 

  24. Colella S, Shen L, Baggerly KA et al. (2003) Sensitive and quantitative universal Pyrosequencing methylation analysis of CpG sites. Biotechniques 35: 146–150

    PubMed  CAS  Google Scholar 

  25. Coon SW, Savera AT, Zarbo RJ et al. (2004) Prognostic implications of loss of heterozygosity at 8p21 and 9p21 in head and neck squamous cell carcinoma. Int J Cancer 111: 206–212

    PubMed  CAS  Google Scholar 

  26. Costello JF, Fruhwald MC, Smiraglia DJ et al. (2000) Aberrant CpG-island methylation has non-random and tumour-type-specific patterns. Nat Genet 24: 132–138

    PubMed  CAS  Google Scholar 

  27. Cummins JM, He Y, Leary RJ et al. (2006) The colorectal microRNAome. Proc Natl Acad Sci U S A 103: 3687–3692

    PubMed  CAS  Google Scholar 

  28. Dikshit RP, Gillio-Tos A, Brennan P et al. (2007) Hypermethylation, risk factors, clinical characteristics, and survival in 235 patients with laryngeal and hypopharyngeal cancers. Cancer 110: 1745–1751

    PubMed  CAS  Google Scholar 

  29. Dong SM, Sun DI, Benoit NE et al. (2003) Epigenetic inactivation of RASSF1A in head and neck cancer. Clin Cancer Res 9: 3635–3640

    PubMed  CAS  Google Scholar 

  30. Dos Reis PP, Poli-Frederico RC, Dos Santos RM et al. (2002) Distinct regions of loss of heterozygosity on 22q in different sites of head and neck squamous cell carcinomas. Med Sci Monit 8: BR89–BR94

    Google Scholar 

  31. Eckhardt F, Lewin J, Cortese R et al. (2006) DNA methylation profiling of human chromosomes 6, 20 and 22. Nat Genet 38: 1378–1385

    PubMed  CAS  Google Scholar 

  32. Eder M, Scherr M (2005) MicroRNA and lung cancer. N Engl J Med 352: 2446–2448

    PubMed  CAS  Google Scholar 

  33. Ehrich M, Nelson MR, Stanssens P et al. (2005) Quantitative high-throughput analysis of DNA methylation patterns by base-specific cleavage and mass spectrometry. Proc Natl Acad Sci U S A 102: 15785–15790

    PubMed  CAS  Google Scholar 

  34. Ehrlich M (2000) DNA hypomethylation and cancer. In: Ehrlich M (ed) DNA alterations in cancer. Eaton Publishing, Natick, MA, pp 273–291

  35. El-Naggar AK, Lai S, Clayman G et al. (1997) Methylation, a major mechanism of p16/CDKN2 gene inactivation in head and neck squamous carcinoma. Am J Pathol 151: 1767–1774

    PubMed  CAS  Google Scholar 

  36. Estecio MR, Youssef EM, Rahal P et al. (2006) LHX6 is a sensitive methylation marker in head and neck carcinomas. Oncogene 25: 5018–5026

    PubMed  CAS  Google Scholar 

  37. Esteller M (2007) Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet 8: 286–298

    PubMed  CAS  Google Scholar 

  38. Esteller M, Hamilton SR, Burger PC et al. (1999) Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is a common event in primary human neoplasia. Cancer Res 59: 793–797

    PubMed  CAS  Google Scholar 

  39. Ferlay A, Martin B, Pradel P et al. (2006) Influence of grass-based diets on milk fatty acid composition and milk lipolytic system in Tarentaise and Montbeliarde cow breeds. J Dairy Sci 89: 4026–4041

    Article  PubMed  CAS  Google Scholar 

  40. Forozan F, Karhu R, Kononen J et al. (1997) Genome screening by comparative genomic hybridization. Trends Genet 13: 405–409

    PubMed  CAS  Google Scholar 

  41. Franzmann EJ, Reategui EP, Pedroso F et al. (2007) Soluble CD44 is a potential marker for the early detection of head and neck cancer. Cancer Epidemiol Biomarkers Prev 16: 1348–1355

    PubMed  CAS  Google Scholar 

  42. Freitas MA, Sklenar AR, Parthun MR (2004) Application of mass spectrometry to the identification and quantification of histone post-translational modifications. J Cell Biochem 92: 691–700

    PubMed  CAS  Google Scholar 

  43. Frigola J, Ribas M, Risques RA et al. (2002) Methylome profiling of cancer cells by amplification of inter-methylated sites (AIMS). Nucleic Acids Res 30: e28

    PubMed  Google Scholar 

  44. Gifford G, Paul J, Vasey PA et al. (2004) The acquisition of hMLH1 methylation in plasma DNA after chemotherapy predicts poor survival for ovarian cancer patients. Clin Cancer Res 10: 4420–4426

    PubMed  CAS  Google Scholar 

  45. Gonzalez MV, Pello MF, Ablanedo P et al. (1998) Chromosome 3p loss of heterozygosity and mutation analysis of the FHIT and beta-cat genes in squamous cell carcinoma of the head and neck. J Clin Pathol 51: 520–524

    Article  PubMed  CAS  Google Scholar 

  46. Gonzalez MV, Pello MF, Lopez-Larrea C et al. (1997) Deletion and methylation of the tumour suppressor gene p16/CDKN2 in primary head and neck squamous cell carcinoma. J Clin Pathol 50: 509–512

    PubMed  CAS  Google Scholar 

  47. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100: 57–70

    PubMed  CAS  Google Scholar 

  48. Hart TC (1997) Applications of molecular epidemiology to head and neck cancer. Otolaryngol Clin North Am 30: 21–34

    PubMed  CAS  Google Scholar 

  49. Hasegawa M, Nelson HH, Peters E et al. (2002) Patterns of gene promoter methylation in squamous cell cancer of the head and neck. Oncogene 21: 4231–4236

    PubMed  CAS  Google Scholar 

  50. Hashimoto Y, Oga A, Kawauchi S et al. (2001) Amplification of 3q26 approximately qter correlates with tumor progression in head and neck squamous cell carcinomas. Cancer Genet Cytogenet 129: 52–56

    PubMed  CAS  Google Scholar 

  51. Hatada I, Hayashizaki Y, Hirotsune S et al. (1991) A genomic scanning method for higher organisms using restriction sites as landmarks. Proc Natl Acad Sci U S A 88: 9523–9527

    PubMed  CAS  Google Scholar 

  52. He H, Jazdzewski K, Li W et al. (2005) The role of microRNA genes in papillary thyroid carcinoma. Proc Natl Acad Sci U S A 102: 19075–19080

    PubMed  CAS  Google Scholar 

  53. Hebert C, Norris K, Scheper MA et al. (2007) High mobility group A2 is a target for miRNA-98 in head and neck squamous cell carcinoma. Mol Cancer 6: 5

    PubMed  Google Scholar 

  54. Herman JG, Graff JR, Myohanen S et al. (1996) Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci U S A 93: 9821–9826

    PubMed  CAS  Google Scholar 

  55. Herman JG, Merlo A, Mao L et al. (1995) Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers. Cancer Res 55: 4525–4530

    PubMed  CAS  Google Scholar 

  56. Hoa M, Davis SL, Ames SJ et al. (2002) Amplification of wild-type K-ras promotes growth of head and neck squamous cell carcinoma. Cancer Res 62: 7154–7156

    PubMed  CAS  Google Scholar 

  57. Hogg RP, Honorio S, Martinez A et al. (2002) Frequent 3p allele loss and epigenetic inactivation of the RASSF1A tumour suppressor gene from region 3p21.3 in head and neck squamous cell carcinoma. Eur J Cancer 38: 1585–1592

    PubMed  CAS  Google Scholar 

  58. Jemal A, Murray T, Ward E et al. (2005) Cancer statistics, 2005. CA Cancer J Clin 55: 10–30

    PubMed  Google Scholar 

  59. Jenuwein T, Allis CD (2001) Translating the histone code. Science 293: 1074–1080

    PubMed  CAS  Google Scholar 

  60. Jones PA, Baylin SB (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3: 415–428

    PubMed  CAS  Google Scholar 

  61. Kim VN, Nam JW (2006) Genomics of microRNA. Trends Genet 22: 165–173

    PubMed  CAS  Google Scholar 

  62. Kraunz KS, Hsiung D, Mcclean MD et al. (2006) Dietary folate is associated with p16(INK4A) methylation in head and neck squamous cell carcinoma. Int J Cancer 119: 1553–1557

    PubMed  CAS  Google Scholar 

  63. Leemans CR, Tiwari R, Nauta JJ et al. (1994) Recurrence at the primary site in head and neck cancer and the significance of neck lymph node metastases as a prognostic factor. Cancer 73: 187–190

    PubMed  CAS  Google Scholar 

  64. Li E (2002) Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev Genet 3: 662–673

    PubMed  CAS  Google Scholar 

  65. Li E, Bestor TH, Jaenisch R (1992) Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69: 915–926

    PubMed  CAS  Google Scholar 

  66. Lin M, Smith LT, Smiraglia DJ et al. (2006) DNA copy number gains in head and neck squamous cell carcinoma. Oncogene 25: 1424–1433

    PubMed  CAS  Google Scholar 

  67. Lu J, Getz G, Miska EA et al. (2005) MicroRNA expression profiles classify human cancers. Nature 435: 834–838

    PubMed  CAS  Google Scholar 

  68. Marsit CJ, Houseman EA, Christensen BC et al. (2006) Examination of a CpG island methylator phenotype and implications of methylation profiles in solid tumors. Cancer Res 66: 10621–10629

    PubMed  CAS  Google Scholar 

  69. Marsit CJ, Liu M, Nelson HH et al. (2004) Inactivation of the Fanconi anemia/BRCA pathway in lung and oral cancers: implications for treatment and survival. Oncogene 23: 1000–1004

    PubMed  CAS  Google Scholar 

  70. Martin C, Zhang Y (2005) The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol 6: 838–849

    PubMed  CAS  Google Scholar 

  71. Martone T, Gillio-Tos A, De Marco L et al. (2007) Association between hypermethylated tumor and paired surgical margins in head and neck squamous cell carcinomas. Clin Cancer Res 13: 5089–5094

    PubMed  CAS  Google Scholar 

  72. Masuda M, Suzui M, Yasumatu R et al. (2002) Constitutive activation of signal transducers and activators of transcription 3 correlates with cyclin D1 overexpression and may provide a novel prognostic marker in head and neck squamous cell carcinoma. Cancer Res 62: 3351–3355

    PubMed  CAS  Google Scholar 

  73. Meltzer PS (2005) Cancer genomics: small RNAs with big impacts. Nature 435: 745–746

    PubMed  CAS  Google Scholar 

  74. Nayak CS, Carvalho AL, Jeronimo C et al. (2007) Positive correlation of tissue inhibitor of metalloproteinase-3 and death-associated protein kinase hypermethylation in head and neck squamous cell carcinoma. Laryngoscope 117: 1376–1380

    PubMed  CAS  Google Scholar 

  75. Ng HH, Bird A (1999) DNA methylation and chromatin modification. Curr Opin Genet Dev 9: 158–163

    PubMed  CAS  Google Scholar 

  76. Okano M, Bell DW, Haber DA et al. (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99: 247–257

    PubMed  CAS  Google Scholar 

  77. Oude Ophuis MB, Manni JJ, Peters WH (2006) Glutathione S-transferase T1 null polymorphism and the risk for head and neck cancer. Acta Otolaryngol 126: 311–317

    Google Scholar 

  78. Patel AM, Incognito LS, Schechter GL et al. (1996) Amplification and expression of EMS-1 (cortactin) in head and neck squamous cell carcinoma cell lines. Oncogene 12: 31–35

    PubMed  CAS  Google Scholar 

  79. Pillai RS (2005) MicroRNA function: multiple mechanisms for a tiny RNA? RNA 11: 1753–1761

    PubMed  CAS  Google Scholar 

  80. Rakyan VK, Hildmann T, Novik KL et al. (2004) DNA methylation profiling of the human major histocompatibility complex: a pilot study for the human epigenome project. PLoS Biol 2: e405

    PubMed  Google Scholar 

  81. Rauch T, Pfeifer GP (2005) Methylated-CpG island recovery assay: a new technique for the rapid detection of methylated-CpG islands in cancer. Lab Invest 85: 1172–1180

    PubMed  CAS  Google Scholar 

  82. Rehwinkel J, Behm-Ansmant I, Gatfield D et al. (2005) A crucial role for GW182 and the DCP1: DCP2 decapping complex in miRNA-mediated gene silencing. RNA 11: 1640–1647

    PubMed  CAS  Google Scholar 

  83. Righini CA, De Fraipont F, Timsit JF et al. (2007) Tumor-specific methylation in saliva: a promising biomarker for early detection of head and neck cancer recurrence. Clin Cancer Res 13: 1179–1185

    PubMed  CAS  Google Scholar 

  84. Robertson K, Keymarsi K, Gonzales F et al. (2000) Differential mRNA expression of the human DNA methyltransferase (DNMTs)1, 3a and 3b during the Go/G1 to S phase transition in normal and tumor cells. Nucleic Acids Res 28: 2108–2113

    PubMed  CAS  Google Scholar 

  85. Rosas SL, Koch W, Da Costa Carvalho MG et al. (2001) Promoter hypermethylation patterns of p16, O6-methylguanine-DNA-methyltransferase, and death-associated protein kinase in tumors and saliva of head and neck cancer patients. Cancer Res 61: 939–942

    PubMed  CAS  Google Scholar 

  86. Rountree MR, Bachman KE, Baylin SB (2000) DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci. Nat Genet 25: 269–277

    PubMed  CAS  Google Scholar 

  87. Saito Y, Liang G, Egger G et al. (2006) Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell 9: 435–443

    PubMed  CAS  Google Scholar 

  88. Santos-Rosa H, Caldas C (2005) Chromatin modifier enzymes, the histone code and cancer. Eur J Cancer 41: 2381–2402

    PubMed  CAS  Google Scholar 

  89. Sengupta S, Chakrabarti S, Roy A et al. (2007) Inactivation of human mutL homolog 1 and mutS homolog 2 genes in head and neck squamous cell carcinoma tumors and leukoplakia samples by promoter hypermethylation and its relation with microsatellite instability phenotype. Cancer 109: 703–712

    PubMed  CAS  Google Scholar 

  90. Shen L, Catalano PJ, Benson AB 3rd et al. (2007) Association between DNA methylation and shortened survival in patients with advanced colorectal cancer treated with 5-fluorouracil based chemotherapy. Clin Cancer Res 13: 6093–6098

    PubMed  CAS  Google Scholar 

  91. Singh B, Stoffel A, Gogineni S et al. (2002) Amplification of the 3q26.3 locus is associated with progression to invasive cancer and is a negative prognostic factor in head and neck squamous cell carcinomas. Am J Pathol 161: 365–371

    PubMed  CAS  Google Scholar 

  92. Singh M, Shah PP, Singh AP et al. (2008) Association of genetic polymorphisms in glutathione S-transferases and susceptibility to head and neck cancer. Mutat Res 638: 184–194

    PubMed  CAS  Google Scholar 

  93. Smiraglia DJ, Fruhwald MC, Costello JF et al. (1999) A new tool for the rapid cloning of amplified and hypermethylated human DNA sequences from restriction landmark genome scanning gels. Genomics 58: 254–262

    PubMed  CAS  Google Scholar 

  94. Smiraglia DJ, Plass C (2002) The study of aberrant methylation in cancer via restriction landmark genomic scanning. Oncogene 21: 5414–5426

    PubMed  CAS  Google Scholar 

  95. Smiraglia DJ, Smith LT, Lang JC et al. (2003) Differential targets of CpG island hypermethylation in primary and metastatic head and neck squamous cell carcinoma (HNSCC). J Med Genet 40: 25–33

    PubMed  CAS  Google Scholar 

  96. Smith LT, Lin M, Brena RM et al. (2006) Epigenetic regulation of the tumor suppressor gene TCF21 on 6q23-q24 in lung and head and neck cancer. Proc Natl Acad Sci U S A 103: 982–987

    PubMed  CAS  Google Scholar 

  97. Suzuki H, Gabrielson E, Chen W et al. (2002) A genomic screen for genes upregulated by demethylation and histone deacetylase inhibition in human colorectal cancer. Nat Genet 31: 141–149

    PubMed  CAS  Google Scholar 

  98. Takebayashi S, Hickson A, Ogawa T et al. (2004) Loss of chromosome arm 18q with tumor progression in head and neck squamous cancer. Genes Chromosomes Cancer 41: 145–154

    PubMed  CAS  Google Scholar 

  99. Tan D, Wiseman S, Zhou Y et al. (2004) Definition of a region of loss of heterozygosity at chromosome 11q23.3–25 in head and neck squamous cell carcinoma using laser capture microdissection technique. Diagn Mol Pathol 13: 33–40

    PubMed  Google Scholar 

  100. Taylor KH, Kramer RS, Davis JW et al. (2007) Ultradeep bisulfite sequencing analysis of DNA methylation patterns in multiple gene promoters by 454 sequencing. Cancer Res 67: 8511–8518

    PubMed  CAS  Google Scholar 

  101. Vasudevan S, Tong Y, Steitz JA (2007) Switching from repression to activation: microRNAs can up-regulate translation. Science 318: 1931–1934

    PubMed  CAS  Google Scholar 

  102. Vokes EE, Weichselbaum RR, Lippman SM et al. (1993) Head and neck cancer. N Engl J Med 328: 184–194

    PubMed  CAS  Google Scholar 

  103. Waber P, Dlugosz S, Cheng QC et al. (1997) Genetic alterations of chromosome band 9p21–22 in head and neck cancer are not restricted to p16INK4a. Oncogene 15: 1699–1704

    PubMed  CAS  Google Scholar 

  104. Weber A, Hengge UR, Bardenheuer W et al. (2005) SOCS-3 is frequently methylated in head and neck squamous cell carcinoma and its precursor lesions and causes growth inhibition. Oncogene 24: 6699–6708

    PubMed  CAS  Google Scholar 

  105. Weber M, Davies JJ, Wittig D et al. (2005) Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet 37: 853–862

    PubMed  CAS  Google Scholar 

  106. Winn DM, Blot WJ, Mclaughlin JK et al. (1991) Mouthwash use and oral conditions in the risk of oral and pharyngeal cancer. Cancer Res 51: 3044–3047

    PubMed  CAS  Google Scholar 

  107. Woenckhaus J, Steger K, Werner E et al. (2002) Genomic gain of PIK3CA and increased expression of p110alpha are associated with progression of dysplasia into invasive squamous cell carcinoma. J Pathol 198: 335–342

    PubMed  CAS  Google Scholar 

  108. Xiong Z, Laird PW (1997) COBRA: a sensitive and quantitative DNA methylation assay. Nucleic Acids Res 25: 2532–2534

    PubMed  CAS  Google Scholar 

  109. Yan PS, Wei SH, Huang TH (2002) Differential methylation hybridization using CpG island arrays. Methods Mol Biol 200: 87–100

    PubMed  CAS  Google Scholar 

Download references

Danksagung

Die Autoren danken Frau PD Dr. Odilia Popanda, Heidelberg, und Herrn Dr. Hardi Mundl, Basel, für die kritische Durchsicht des Manuskripts und die wertvollen Anregungen sowie Susanna Fuladdjusch für die technische Unterstützung. Epigenetische Projekte bei Kopf- und Hals-Tumoren in der Abteilung werden vom National Institute of Health (DE13123) unterstützt.

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Plass.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmezer, P., Plass, C. Epigenetische Aspekte bei Karzinomen der Kopf-Hals-Region. HNO 56, 594–602 (2008). https://doi.org/10.1007/s00106-008-1720-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00106-008-1720-3

Schlüsselwörter

Keywords

Navigation