Skip to main content
Log in

Gezüchtete Knorpeltransplantate

Histomorphologische, immunhistochemische und biomechanische Charakterisierung

Cartilage grafts generated by tissue engineering

Histomorphological, immunochemical and biomechanical properties

  • Leitthema
  • Published:
HNO Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Zur Züchtung autologer Knorpeltransplantate steht beim „Tissue-Engineering“ die Herstellung autologer Transplantate aus lebenden Zellen oder Geweben bzw. Zellmatrix im Vordergrund. Nicht vollständig resorbierte Faserreste, unkalkulierbare Zell-Biomaterial-Interaktionen sowie inhomogene Zellverteilungen im Zellträger stellen noch ungelöste Probleme dar.

Methode

Daher wurde ein dreidimensionales Aggregatkultursystem entwickelt, in dem Zellen ohne Verwendung von Biomaterialien Knorpelgewebe generieren können. Dazu wurden Chondrozyten sowie mesenchymale adulte Stammzellen verwendet, die in dem Aggregatkultursystem sowie im athymischen Nacktmausmodell Knorpelgewebe unterschiedlicher Phänotypen generierten. Die Knorpelneogenese wurde histomorphologisch, immunhistochemisch und biomechanisch bestimmt.

Ergebnisse

Nach 3 Wochen In-vitro-Aggregatkultur bildeten die Chondrozyten aller Subklassen Knorpelgewebe. Nach einer 6-wöchigen In-vivo-Reifung im athymischen Nacktmausmodell konnte im Vergleich zu nativem Knorpel eine phänotypisch spezifische Knorpelneogenese nachgewiesen werden.

Fazit

Knorpelzellen unterschiedlicher Subklassen sowie adulte mesenchymale Stammzellen generieren in einem 3D-Aggregatkultursystem Knorpelgewebe entsprechend ihrem Phänotyp. Das 3D-Aggregatkultursystem ist eine vielversprechende Methode zur Herstellung von Knorpeltransplantaten in der rekonstruktiven Kopf-Hals-Chirurgie.

Abstract

Background

The main technique used in tissue engineering for the generation of autologous cartilage grafts is the production of autologous transplant material from living cells or tissues and/or cell matrices. Incompletely absorbed residual fibrous matter, unforeseeable interactions between cells and biological materials and uneven cell distribution of cells in the cell carriers still present unsolved problems.

Methods

For these reasons a three-dimensional aggregate culture system was developed in which cells can generate cartilaginous tissue without the use of biomaterials. Chondrocytes and adult mesenchymal stem cells were used for this purpose and generate cartilaginous tissue with various phenotypes both in the aggregate culture system and in the athymic nude mouse model. The newly generated cartilage was subjected to histomorphological, immunochemical and biochemical investigation.

Results

After 3 weeks of in vitro aggregate culture the chondrocytes of all subclasses formed cartilaginous tissue. After 6 weeks’ in vivo maturation in the athymic nude mouse model the new cartilage was found to differ in typical phenotype depending on the native cartilage used.

Conclusions

Cartilage cells of various subclasses and adult menchymal stem cells generate cartilaginous tissue corresponding to their own phenotypes in a 3D aggregate culture system. This culture system is a promising method of producing cartilage grafts for use in reconstructive head and neck surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8
Abb. 9
Abb. 10

Literatur

  1. Aigner J, Tegeler J, Hutzler P et al. (1998) Cartilage tissue engineering with novel nonwoven structured biomaterial based on hyaluronic acid benzyl ester. J Biomed Mater Res 42: 172–181

    Article  PubMed  CAS  Google Scholar 

  2. Alberts B, Bray D, Lewis J et al. (1994) Cell-division controls in multicellular animals. In: Molecular biology of the cell, 3rd edn. Part III: Internal organization of the cell, chapt 17, Garland Science, New York Oxford

    Google Scholar 

  3. Benjamin M, Toumi H, Ralphs JR et al. (2006) Where tendons and ligaments meet bone: attachment sites (‚entheses‘) in relation to exercise and/or mechanical load. J Anat 208: 471–490

    Article  PubMed  CAS  Google Scholar 

  4. Benya PD, Schaffer JD (1982) Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gel. Cell 30: 215–224

    Article  PubMed  CAS  Google Scholar 

  5. Binette F, Mc Quaid DP, Haudenschild DR (1998) Expression of a stable articular cartilage phenotype without evidence of hypertrophy by adult human articular chondrocytes in vitro. J Orthop Res 16: 207–216

    Article  PubMed  CAS  Google Scholar 

  6. Bottaro D, Liebmann-Vinson A, Heidaran M (2002) Molecular signalling in bioengineered tissue microenviroments. Ann N Y Acad Sci 961: 143–153

    Article  PubMed  CAS  Google Scholar 

  7. Cao YL, Vacanti JP, Paige K (1997) Transplantation of chondrocytes utilizing a polymer-cell construct to product tissue engineered cartilage in the shape of a human ear. Plast Reconstr Surg 100: 297–302

    Article  PubMed  CAS  Google Scholar 

  8. Cao Y, Rodriguez A, Vacanti M et al. (1998) Comparative study of the use of poly(glycolic acid), calcium alginate and pluronic in the engineering of autologous porcine cartilage. J Biomater Sci Polym Ed 9: 475–487

    PubMed  CAS  Google Scholar 

  9. Caplan AI (2000) Tissue engineering designs for the future: new logics, old molecules. Tissue Eng 6: 1–8

    Article  PubMed  CAS  Google Scholar 

  10. Carrino DA, Aria JL, Caplan AI (1991) A spectrophotometric modification of a sensitive densitometric safranin o assay for glycosaminoglycans. Biochem Int 24: 485–495

    PubMed  CAS  Google Scholar 

  11. Lindeque BG (2006) Stem cell research: past, present, and future. Orthopedics 29: 392

    PubMed  Google Scholar 

  12. Dennis JE, Haynesworth SE, Young RG, Caplan AI (1992) Osteogenesis in marrow-derived mesenchymal cell porous ceramic composites transplanted subcutaneously: Effect of fibronectin and laminin on cell retention and rate of osteogenic expression. Cell Transplant 1: 23–32

    PubMed  CAS  Google Scholar 

  13. Dickson WA, Inglis TJ (1988) Cialit preserved cartilage: failure to guarantee sterility. Br J Plast Surg 41: 408–409

    Article  PubMed  CAS  Google Scholar 

  14. Dravid G, Rao SGA (2002) Ex vivo expansion of stem cells from umbilical cord blood: expression of cell adhesion molecules. Stem Cells 20: 183–189

    Article  PubMed  CAS  Google Scholar 

  15. Furukawa KS, Imura K, Tateishi T, Ushida T (in press) Scaffold-free cartilage by rotational culture for tissue engineering. J Biotechnol: Epub ahead of print

  16. Habiballah JA, Bamousa A (2000) Allograftic and alloplastic auricular reconstruction. Saudi Med J 21: 1173–1177

    PubMed  CAS  Google Scholar 

  17. Huettenbrink KB, Weidenfellner P (1995) Sind Cialit-konservierte Ossikel als Mittelohrimplantate bakteriologisch noch vertretbar? Laryngol Rhinol Otol 69: 327–332

    Google Scholar 

  18. Johnstone B, Yoo JO (1999) Autologous mesenchymal progenitor cells in articular cartilage repair. Clin Orthop 367: 156–162

    Article  Google Scholar 

  19. Kastenbauer ER (1972) Osteogenetic capabilities of the tympanic cavity and of ossicular grafts upon orthotopic and heterotopic transplantation. Arch Klin Exp Ohren Nasen Kehlkopfheilkd 203: 70–80

    Article  PubMed  CAS  Google Scholar 

  20. Kastenbauer ER (1983) Konservierung und Anwendungsmöglichkeiten allogener (homologer) Transplantate im Hals-Nasen-Ohrenbereich. HNO 31: 371–380

    PubMed  CAS  Google Scholar 

  21. Letko E, Zafirakis P, Baltatzis S et al. (2002) Relapsing polychondritis: a clinical review. Semin Arthritis Rheum 31: 384–395

    Article  PubMed  Google Scholar 

  22. Milz S, Schlüter T, Putz R et al. (2001) Fibrocartilage in the transverse ligament of the human atlas. Spine 26: 1765–1771

    Article  PubMed  CAS  Google Scholar 

  23. Mow VC, Gibbs MC, Lai WM et al. (1989) Biphasic indentation of articular cartilage – II. A numerical algorithm and experimental study. J Biomech 22: 853–861

    Article  PubMed  CAS  Google Scholar 

  24. Naumann A, Dennis J, Staudenmaier R et al. (2002) Mesenchymal stem cells – a new pathway for tissue engineering in reconstructive surgery. Laryngorhinootol 81: 521–527

    Article  CAS  Google Scholar 

  25. Naumann A, Bujía J (1995) Nähere Charakterisierung einer humoralen Immunreaktivität gegen Knorpelgewebe bei Patienten mit Resorptionen von Knorpeltransplantaten im Kopf-Halsbereich. Laryngorhinootologie 74: 69–75

    PubMed  CAS  Google Scholar 

  26. Naumann AJ, Rotter N, Bujía JM, Aigner J (1998) Tissue engineering of autologous cartilage transplants for rhinology. Am J Rhinol 12: 59–63

    Article  PubMed  CAS  Google Scholar 

  27. Palmer JL, Bertone AL, Mansour J et al. (1995) Biomechanical properties of third carpal articular cartilage in exercised and nonexercised horses. J Orthop Res 13: 854–860

    Article  PubMed  CAS  Google Scholar 

  28. Pittenger MF, Mackay AM, Beck SC et al. (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284: 143–147

    Article  PubMed  CAS  Google Scholar 

  29. Risbud MV, Sittinger M (2002) Tissue engineering: advances in in vitro cartilage generation. Trends Biotechnol 20: 351–356

    Article  PubMed  CAS  Google Scholar 

  30. Rodriguez A, Cao YL, Ibarra C et al. (1999) Characteristics of cartilage engineered from human pediatric auricular cartilage. Plast Reconstr Surg 103: 1111–1119

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Naumann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naumann, A. Gezüchtete Knorpeltransplantate . HNO 56, 109–121 (2008). https://doi.org/10.1007/s00106-007-1651-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00106-007-1651-4

Schlüsselwörter

Keywords

Navigation