Skip to main content

Advertisement

Log in

Urethritis – Erregerspektrum, Diagnostik und Therapie

Urethritis—spectrum of pathogens, diagnostics and treatment

  • Leitthema
  • Published:
Die Dermatologie Aims and scope Submit manuscript

Zusammenfassung

Eine Urethritis kann durch ein breites Spektrum von Bakterien, Pilzen, Protozoen und Viren hervorgerufen werden, wobei insbesondere Neisseria gonorrhoeae, Chlamydia trachomatis, Mycoplasma genitalium und Trichomonas vaginalis als klassische Erreger sexuell übertragbarer Infektionen (STI, sexually transmitted infection) im Fokus der diagnostischen Erwägungen stehen. Zur vollständigen Diagnosestellung wird ein stufenweises Vorgehen gewählt. Die Mikroskopie mit Färbepräparat ermöglicht bei symptomatischen Männern eine erste Unterscheidung zwischen gonorrhoischer und nicht-gonorrhoischer Urethritis als POC(Point-of-Care)-Test. Die Diagnostik mittels NAAT (nucleic acid amplification technology) wird zum spezifischen und sensitiven Erregernachweis genutzt und bietet als Multiplexdiagnostik die Möglichkeit zum Nachweis mehrerer Organismen aus derselben Probe. Zudem werden hierbei – im Vergleich zur Kultur – keine vitalen Organismen benötigt, was die Entnahme und Verwendung vielfältigerer und weniger invasiver biologischer Proben (Erststrahlurin beim Mann oder Vaginalabstriche) ermöglicht. Die Empfindlichkeitstestung mittels Kultur bleibt für N. gonorrhoeae bei zunehmender Resistenzentwicklung unerlässlich. Die Therapie einer Urethritis richtet sich nach dem vermuteten oder nachgewiesenen Erreger unter Berücksichtigung der aktuellen Leitlinien. Therapieversagen kann vielfältige Ursachen haben (Koinfektion, mangelnde Therapieadhärenz, Reinfektion oder Resistenz des Erregers) und erfordert ein erneutes diagnostisches und therapeutisches Vorgehen und eine differenzierte Betrachtung.

Abstract

A broad spectrum of bacteria, fungi, protozoa and viruses can cause urethritis. In particular, N. gonorrhoeae, C. trachomatis, M. genitalium and T. vaginalis are the focus of diagnostic considerations as classic pathogens associated with sexually transmitted infections (STI). A step-by-step procedure is needed to make a definitive diagnosis. Microscopy with a staining preparation provides an initial differentiation between gonoccocal and non-gonococcal urethritis in symptomatic men as a point-of-care (POC) test. Nucleic acid amplification technology (NAAT) is used for specific and sensitive pathogen detection and, as a multiplex diagnostic test, offers the possibility of detecting several organisms from the same sample. In addition, compared to culture, no vital organisms are required, which allows the collection and use of more diverse and less invasive biological samples (e.g. first stream urine in men or vaginal swabs). Susceptibility testing by culture remains essential for N. gonorrhoeae as resistance is emerging. The treatment of urethritis depends on the suspected or proven pathogen according to the current guidelines. Treatment failure can be caused by many factors (coinfection, lack of therapy adherence, reinfection or resistance of the pathogen) and requires a repeated diagnostic and therapeutic procedure and differentiated approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7

Abbreviations

AWMF:

Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften

C. glabrata:

Candida glabrata

C. krusei:

Candida krusei

C. trachomatis:

Chlamydia trachomatis

C. tropicalis:

Candida tropicalis

CLSI:

Clinical and Laboratory Standards Institute

CMV:

Cytomegalovirus

DGI:

Disseminierte Gonokokkeninfektion

EUCAST:

European Committee on Antimicrobial Susceptibility Testing

GKV:

Gesetzliche Krankenversicherung

GORENET:

Gonokokken-Resistenz-Netzwerk

GO-Surv:

Gonokokken-Resistenzsurveillance

H. influenzae:

Haemophilus influenzae

HIV:

Humanes Immundefizienzvirus

H. parainfluenzae:

Haemophilus parainfluenzae

HPV:

Humane Papillomviren

HSV:

Herpes-simplex-Virus

IUP:

Intrauterinpessare

IUSTI:

International Union against Sexually Transmitted Infections

Klebsiella sp.:

Klebsiella species

MDR-NG:

Multidrug-resistant Neisseria gonorrhoeae

MHK:

Minimale Hemmkonzentration

M. genitalium:

Mycoplasma genitalium

NAAT:

Nucleic acid amplification technology

N. gonorrhoeae:

Neisseria gonorrhoeae

NGU:

Nicht-gonorrhoische Urethritis

N. meningitidis :

Neisseria meningitidis

PCR:

Polymerasekettenreaktion

PeP:

Postexpositionsprophylaxe

PID:

Pelvic inflammatory disease

POC:

Point-of-Care

PreP:

Präexpositionsprophylaxe

Proteus sp.:

Proteus species

SARA:

Sexually acquired reactive arthritis

STI:

Sexually transmitted infection

TIF:

Tubare Infertilität

T. vaginalis:

Trichomonas vaginalis

U. parvum:

Ureaplasma parvum

U. urealyticum:

Ureaplasma urealyticum

VZV:

Varizella-Zoster-Virus

WHO:

Weltgesundheitsorganisation

Literatur

  1. Rane VS, Fairley CK, Weerakoon A et al (2014) Characteristics of acute nongonococcal urethritis in men differ by sexual preference. J Clin Microbiol 52:2971–2976. https://doi.org/10.1128/JCM.00899-14

    Article  PubMed  PubMed Central  Google Scholar 

  2. Frølund M, Lidbrink P, Wikström A, Cowan S, Ahrens P, Jensen JS (2016) Urethritis-associated pathogens in urine from men with non-gonococcal urethritis: a case-control study. Acta Derm Venereol 96:689–694

    PubMed  Google Scholar 

  3. Workowski KA, Bachmann LH, Chan PA, Johnston CM, Muzny CA, Park I, Reno H, Zenilman JM, Bolan GA (2021) Sexually transmitted infections treatment guidelines, 2021. MMWR Recomm Rep 70(4):1–187. https://doi.org/10.15585/mmwr.rr7004a1

    Article  PubMed  PubMed Central  Google Scholar 

  4. Vives A, da Silva GVM, Alonso-Tarrés C, Suarez JB, Palmisano F, Cosentino M (2021) Haemophilus urethritis in males: a series of 30 cases. Rev Int Androl 19(3):160–163. https://doi.org/10.1016/j.androl.2020.01.002

    Article  PubMed  Google Scholar 

  5. Jensen JS (2021) Male urethritis of unknown etiology: piecing together the puzzle. Clin Infect Dis 73(7):e1694–e1695

    CAS  PubMed  Google Scholar 

  6. Ito S, Hatazaki K, Shimuta K et al (2017) Haemophilus influenzae isolated from men with acute urethritis: its pathogenic roles, responses to antimicrobial chemotherapies, and antimicrobial susceptibilities. Sex Transm Dis 44:205–210. https://doi.org/10.1097/OLQ.0000000000000573

    Article  CAS  PubMed  Google Scholar 

  7. Deguchi T, Ito S, Hatazaki K et al (2017) Antimicrobial susceptibility of haemophilus influenzae strains isolated from the urethra of men with acute urethritis and/or epididymitis. J Infect Chemother 23:804–807. https://doi.org/10.1016/j.jiac.2017.05.009

    Article  CAS  PubMed  Google Scholar 

  8. Deza G, Martin-Ezquerra G, Gómez J, Villar-García J, Supervia A, Pujol RM (2016) Isolation of haemophilus influenzae and haemophilus parainfluenzae in urethral exudates from men with acute urethritis: a descriptive study of 52 cases. Sex Transm Infect 92(1):29–31. https://doi.org/10.1136/sextrans-2015-052135

    Article  PubMed  Google Scholar 

  9. Sierra Y, González-Díaz A, Tubau F, Imaz A, Cubero M, Càmara J, Ayats J, Martí S, Ardanuy C (2020) Emergence of multidrug resistance among haemophilus parainfluenzae from respiratory and urogenital samples in Barcelona, Spain. Eur J Clin Microbiol Infect Dis 39(4):703–710

    CAS  PubMed  Google Scholar 

  10. Bazan JA, Peterson AS, Kirkcaldy RD et al (2016) Notes from the field: increase in Neisseria meningitidis-associated urethritis among men at two sentinel clinics—Columbus, Ohio, and Oakland County, Michigan, 2015. Mmwr Morb Mortal Wkly Rep 65:550–552. https://doi.org/10.15585/mmwr.mm6521a5

    Article  PubMed  Google Scholar 

  11. Jannic A, Mammeri H, Larcher L et al (2019) Orogenital transmission of Neisseria meningitidis causing acute urethritis in men who have sex with men. Emerg Infect Dis 25:175–176. https://doi.org/10.3201/eid2501.171102

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bazan JA, Tzeng YL, Stephens DS et al (2020) Repeat episodes of symptomatic urethritis due to a uropathogenic meningococcal clade. Sex Transm Dis 47:e1–4. https://doi.org/10.1097/OLQ.0000000000001079

    Article  PubMed  PubMed Central  Google Scholar 

  13. Burns BL, Rhoads DD (2022) Meningococcal urethritis: old and new. J Clin Microbiol 60(11):e57522. https://doi.org/10.1128/jcm.00575-22

    Article  CAS  PubMed  Google Scholar 

  14. Avolio M, Ong JJ, Morton AN, Henzell HR et al (2017) Clinical characteristics of herpes simplex virus urethritis compared with chlamydial urethritis among men. Sex Transm Dis 44:121–125. https://doi.org/10.1097/OLQ.0000000000000547

    Article  Google Scholar 

  15. De Rosa R, Modolo ML, Stano P, Camporese A (2014) When should adenoviral non-gonococcal urethritis be suspected? Two case reports. New Microbiol 37:109–112

    PubMed  Google Scholar 

  16. Hanaoka N, Ito S, Nojiri N, Konagaya M, Yasuda M, Deguchi T, Fujimoto T (2020) Human adenovirus B7d-associated urethritis after suspected sexual transmission, Japan. Emerg Infect Dis 26(10):2444–2447

    CAS  PubMed  PubMed Central  Google Scholar 

  17. AWMF (2019) S2k-Leitlinie: diagnostic and treatment of gonorrhea. https://www.awmf.org/uploads/tx_szleitlinien/059-004l_S2k_Gonorrhoe-Diagnostik-Therapie_2019-03.pdf. Zugegriffen: 1. Aug. 2023

  18. Fifer H, Saunders J, Soni S, Sadiq ST, FitzGerald M (2020) 2018 UK national guideline for the management of infection with Neisseria gonorrhoeae. Int J STD Aids 31(1):4–15

    PubMed  Google Scholar 

  19. Rowley J, Vander Hoorn S, Korenromp E, Low N, Unemo M, Abu-Raddad LJ, Chico RM, Smolak A, Newman L, Gottlieb S, Thwin SS, Brouteta N, Taylora MM (2019) Chlamydia, gonorrhoea, trichomoniasis and syphilis: global prevalence and incidence estimates, 2016. Bull World Health Organ 97(8):548–562P

    PubMed  PubMed Central  Google Scholar 

  20. Dombrowski JC (2021) Chlamydia and gonorrhea. Ann Intern Med 174(10):ITC145–ITC160. https://doi.org/10.7326/AITC202110190

    Article  PubMed  Google Scholar 

  21. Jansen K, Steffen G, Potthoff A, Schuppe AK, Beer D, Jessen H, Scholten S, Spornraft-Ragaller P, Bremer V, Tiemann C (2020) MSM screening study group. STI in times of PrEP: high prevalence of chlamydia, gonorrhea, and mycoplasma at different anatomic sites in men who have sex with men in Germany. BMC Infect Dis 20(1):110

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Darville T (2021) Pelvic inflammatory disease due to Neisseria gonorrhoeae and Chlamydia trachomatis: immune evasion mechanisms and pathogenic disease pathways. Infect Dis 224(12):S39–S46. https://doi.org/10.1093/infdis/jiab031

    Article  CAS  Google Scholar 

  23. Buder S, Dudareva S, Jansen K, Loenenbach A, Nikisins S, Sailer A, Guhl E, Kohl PK, Bremer V, GORENET study group (2018) Antimicrobial resistance of Neisseria gonorrhoeae in Germany: low levels of cephalosporin resistance, but high azithromycin resistance. BMC Infect Dis 18(1):44

    PubMed  PubMed Central  Google Scholar 

  24. Selb R, Buder S, Dudareva S, Tamminga T, Bremer V, Banhart S, Heuer H, Jansen K (2021) Markedly decreasing azithromycin susceptibility of Neisseria gonorrhoeae, Germany, 2014 to 2021. Euro Surveill 26(31):2100616

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Fifer H, Cole M, Hughes G et al (2018) Sustained transmission of high-level azithromycin-resistant Neisseria gonorrhoeae in England: an observational study. Lancet Infect Dis 18(5):573–581

    PubMed  Google Scholar 

  26. Cole MJ, Day M, Jacobsson S, Amato-Gauci AJ, Spiteri G, Unemo M, European Gonorrhoea Response Plan Group (2022) The European response to control and manage multi- and extensively drug-resistant Neisseria gonorrhoeae. Euro Surveill 27(18):2100611. https://doi.org/10.2807/1560-7917.ES.2022.27.18.2100611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Golparian D, Vestberg N, Södersten W, Jacobsson S, Ohnishi M, Fang H, Bhattarai KH, Unemo M (2023) Multidrug-resistant Neisseria gonorrhoeae isolate SE690: mosaic penA-60.001 gene causing ceftriaxone resistance internationally has spread to the more antimicrobial-susceptible genomic lineage, Sweden, September 2022. Euro Surveill 28(10):2300125. https://doi.org/10.2807/1560-7917.ES.2023.28.10.2300125

    Article  PubMed  PubMed Central  Google Scholar 

  28. Fifer H, Natarajan U, Jones L, Alexander S, Hughes G, Golparian D et al (2016) Failure of dual antimicrobial therapy in treatment of gonorrhea. N Engl J Med 374(25):2504–2506. https://doi.org/10.1056/NEJMc1512757

    Article  PubMed  Google Scholar 

  29. Eyre DW, Sanderson ND, Lord E, Regisford-Reimmer N, Chau K, Barker L et al (2018) Gonorrhoea treatment failure caused by a Neisseria gonorrhoeae strain with combined ceftriaxone and high-level azithromycin resistance, England, February 2018. Euro Surveill. https://doi.org/10.2807/1560-7917.ES.2018.23.27.1800323

    Article  PubMed  PubMed Central  Google Scholar 

  30. Whiley DM, Jennison A, Pearson J, Lahra MM (2018) Genetic characterisation of Neisseria gonorrhoeae resistant to both ceftriaxone and azithromycin. Lancet Infect Dis 18(7):717–718. https://doi.org/10.1016/S1473-3099(18)30340-2

    Article  PubMed  Google Scholar 

  31. Gassowski M, Poethko-Müller C, Schlaud M, Sailer A, Dehmel K, Bremer V, Dudareva S, Jansen K, Chlamydia trachomatis laboratory sentinel team (2022) Prevalence of Chlamydia trachomatis in the general population in Germany—a triangulation of data from two population-based health surveys and a laboratory sentinel system. BMC Public Health 22(1):1107

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Buder S, Schöfer H, Meyer T, Bremer V, Kohl PK, Skaletz-Rorowski A, Brockmeyer N (2019) Bacterial sexually transmitted infections. J Dtsch Dermatol Ges 17(3):287–315. https://doi.org/10.1111/ddg.13804

    Article  PubMed  Google Scholar 

  33. Fode M, Fusco F, Lipshultz L, Weidner W (2016) Sexually transmitted disease and male infertility: a systematic review. Eur Urol Focus 2:383–393

    PubMed  Google Scholar 

  34. Lautenschlager S (2015) Non-gonococcal infectious urethritis : pathogen spectrum and management. Hautarzt 66(1):12–18

    CAS  PubMed  Google Scholar 

  35. Horner P, Donders G, Cusini M, Gomberg M, Jensen JS, Unemo M (2018) Should we be testing for urogenital mycoplasma hominis, ureaplasma parvum and ureaplasma urealyticum in men and women?—a position statement from the European STI guidelines editorial board. J Eur Acad Dermatol Venereol 32(11):1845–1851. https://doi.org/10.1111/jdv.15146

    Article  CAS  PubMed  Google Scholar 

  36. Jensen JS, Cusini M, Gomberg M, Moi H, Wilson J, Unemo M (2022) 2021 European guideline on the management of mycoplasma genitalium infections. J Eur Acad Dermatol Venereol 36(5):641–650. https://doi.org/10.1111/jdv.17972

    Article  CAS  PubMed  Google Scholar 

  37. Gnanadurai R, Fifer H (2020) Mycoplasma genitalium: a review. Microbiology 166(1):21–29. https://doi.org/10.1099/mic.0.000830

    Article  CAS  PubMed  Google Scholar 

  38. Taylor-Robinson D, Jensen JS (2011) Mycoplasma genitalium: from chrysalis to multicolored butterfly. Clin Microbiol Rev 24:498–514

    PubMed  PubMed Central  Google Scholar 

  39. Andersen B, Sokolowski I, Ostergaard L, Kjølseth Møller J, Olesen F, Jensen JS (2007) Mycoplasma genitalium: prevalence and behavioural risk factors in the general population. Sex Transm Infect 83:237–241

    PubMed  Google Scholar 

  40. Oakeshott P, Aghaizu A, Hay P et al (2010) Is mycoplasma genitalium in women the “New Chlamydia?” A community-based prospective cohort study. Clin Infect Dis 51:1160–1166

    PubMed  Google Scholar 

  41. Manhart LE, Holmes KK, Hughes JP, Houston LS, Totten PA (2007) Mycoplasma genitalium among young adults in the United States: an emerging sexually transmitted infection. Am J Public Health 97:1118–1125

    PubMed  PubMed Central  Google Scholar 

  42. Sonnenberg P, Ison CA, Clifton S et al (2015) Epidemiology of mycoplasma genitalium in British men and women aged 16–44 years: evidence from the third national survey of sexual attitudes and lifestyles (Natsal-3). Int J Epidemiol 44:1982–1994

    PubMed  PubMed Central  Google Scholar 

  43. Unemo M, Jensen JS (2017) Antimicrobial-resistant sexually transmitted infections: gonorrhoea and mycoplasma genitalium. Nat Rev Urol 14(3):139–152

    PubMed  Google Scholar 

  44. Dumke R, Thürmer A, Jacobs E (2016) Emergence of mycoplasma genitalium strains showing mutations associated with macrolide and fluoroquinolone resistance in the region Dresden, Germany. Diagn Microbiol Infect Dis 86(2):221–223

    CAS  PubMed  Google Scholar 

  45. Dumke R, Rust M, Glaunsinger T (2019) MgpB types among mycoplasma genitalium strains from men who have sex with men in Berlin, Germany, 2016–2018. Pathogens 9(1):12. https://doi.org/10.3390/pathogens9010012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ito S, Tsuchiya T, Yasuda M, Yokoi S, Nakano M, Deguchi T (2012) Prevalence of genital mycoplasmas and ureaplasmas in men younger than 40 years-of-age with acute epididymitis. Int J Urol 19:234–238

    PubMed  Google Scholar 

  47. Anagrius C, Lore B, Jensen JS (2005) Mycoplasma genitalium: prevalence, clinical significance, and transmission. Sex Transm Infect 81:458–462

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Falk L, Fredlund H, Jensen JS (2005) Signs and symptoms of urethritis and cervicitis among women with or without mycoplasma genitalium or chlamydia trachomatis infection. Sex Transm Infect 81:73–78

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Lis R, Rowhani-Rahbar A, Manhart LE (2015) Mycoplasma genitalium infection and female reproductive tract disease: a meta-analysis. Clin Infect Dis 61:418–426

    PubMed  Google Scholar 

  50. Bjartling C, Osser S, Persson K (2012) Mycoplasma genitalium in cervicitis and pelvic inflammatory disease among women at a gynecologic outpatient service. Am J Obstet Gynecol 206:476–478

    Google Scholar 

  51. Kissinger PJ, Gaydos CA, Seña AC, McClelland RS, Soper D, Secor WE, Legendre D, Workowski KA, Muzny CA (2022) Diagnosis and management of trichomonas vaginalis: summary of evidence reviewed for the 2021 centers for disease control and prevention sexually transmitted infections treatment guidelines. Clin Infect Dis 74(2):S152–S161. https://doi.org/10.1093/cid/ciac030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sherrard J, Pitt R, Hobbs KR, Maynard M, Cochrane E, Wilson J, Tipple C (2022) British association for sexual health and HIV (BASHH) united kingdom national guideline on the management of trichomonas vaginalis 2021. Int J STD Aids 33(8):740–750. https://doi.org/10.1177/09564624221103035

    Article  PubMed  Google Scholar 

  53. Meyer T, Eberle J, Roß RS, Schüttler CG, Baier M, Buder S, Kohl PK, Münstermann D, Hagedorn HJ, Nick S, Jansen K, Bremer V, Mau M, Brockmeyer NH (2020) Rapid diagnosis of sexually transmitted infections : joint statement of DSTIG, RKI, and PEI, as well as the reference centers for HIV, HBV, and HCV and consulting laboratories for Chlamydia, gonococci, and treponema pallidum. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 63(10):1271–1286

    PubMed  Google Scholar 

  54. Garrett N, Mitchev N, Osman F, Naidoo J, Dorward J, Singh R, Ngobese H, Rompalo A, Mlisana K, Mindel A (2019) Diagnostic accuracy of the Xpert CT/NG and OSOM trichomonas rapid assays for point-of-care STI testing among young women in south africa: a cross-sectional study. BMJ Open 9(2):e26888. https://doi.org/10.1136/bmjopen-2018-026888

    Article  PubMed  PubMed Central  Google Scholar 

  55. Gaydos CA, Klausner JD, Pai NP, Kelly H, Coltart C, Peeling RW (2017) Rapid and point-of-care tests for the diagnosis of trichomonas vaginalis in women and men. Sex Transm Infect 93(S4):S31–S35. https://doi.org/10.1136/sextrans-2016-053063

    Article  PubMed  Google Scholar 

  56. Nathan B, Appiah J, Saunders P, Heron D, Nichols T, Brum R, Alexander S, Baraitser P, Ison C (2015) Microscopy outperformed in a comparison of five methods for detecting trichomonas vaginalis in symptomatic women. Int J STD Aids 26(4):251–256

    CAS  PubMed  Google Scholar 

  57. Rietmeijer CA, Mettenbrink CJ (2012) Recalibrating the Gram stain diagnosis of male urethritis in the era of nucleic acid amplification testing. Sex Transm Dis 39:18–20

    PubMed  Google Scholar 

  58. Rietmeijer CA, Mettenbrink CJ (2017) The diagnosis of nongonococcal urethritis in men: can there be a universal standard? Sex Transm Dis 44:195–196

    PubMed  Google Scholar 

  59. Moi H, Hartgill U, Skullerud KH, Reponen EJ, Syvertsen L, Moghaddam A (2017) Microscopy of stained urethral smear in male urethritis: which cutoff should be used? Sex Transm Dis 44:189–194

    PubMed  Google Scholar 

  60. Meyer T, Buder S (2020) The laboratory diagnosis of Neisseria gonorrhoeae: current testing and future demands. Pathogens 9(2):91. https://doi.org/10.3390/pathogens9020091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bickley LS, Krisher KK, Punsalang A et al (1989) Comparison of direct fluorescent antibody, acridine orange, wet mount, and culture for detection of trichomonas vaginalis in women attending a public sexually transmitted diseases clinic. Sex Transm Dis 16:127–131

    CAS  PubMed  Google Scholar 

  62. Kreiger JN, Tam MR, Stevens CE et al (1988) Diagnosis of trichomoniasis: comparison of conventional wet-mount examination with cytological studies, cultures, and monoclonal antibody staining of direct specimens. JAMA 259:1223–1227

    Google Scholar 

  63. Nathan B, AppiahSaunders JP, Saunders P et al (2015) Microscopy outperformed in a comparison of five methods for detecting trichomonas vaginalis in symptomatic women. Int J STD Aids 26:251–256

    CAS  PubMed  Google Scholar 

  64. Nye MB, Schwebke JR, Body BA (2009) Comparison of APTIMA trichomonas vaginalis transcription-mediated amplification to wet mount microscopy, culture, and polymerase chain reaction for diagnosis of trichomoniasis in men and women. Am J Obstet Gynecol 200:188–197

    Google Scholar 

  65. Hobbs MM, Lapple DM, Lawing LF et al (2006) Methods for detection of trichomonas vaginalis in the male partners of infected women: implications for control of trichomoniasis. J Clin Microbiol 44:3994–3999

    PubMed  PubMed Central  Google Scholar 

  66. Sherrard J (2019) Evaluation of the BD MAX™ vaginal panel for the detection of vaginal infections in a sexual health service in the UK. Int J STD Aids 30(4):411–414. https://doi.org/10.1177/0956462418815284

    Article  PubMed  Google Scholar 

  67. Dize L, Barnes P Jr, Barnes M, Hsieh YH, Marsiglia V, Duncan D, Hardick J, Gaydos CA (2016) Performance of self-collected penile-meatal swabs compared to clinician-collected urethral swabs for the detection of chlamydia trachomatis, Neisseria gonorrhoeae, trichomonas vaginalis and mycoplasma genitalium by nucleic acid amplification assays. Diagn Microbiol Infect Dis 86(2):131–135

    PubMed  PubMed Central  Google Scholar 

  68. Meyer T (2016) Diagnostic procedures to detect chlamydia trachomatis infections. Microorganisms 4:e25

    Google Scholar 

  69. Dudareva-Vizule S, Haar K, Sailer A, Chlamydia trachomatis laboratory sentinel team et al (2016) Establishment of a voluntary electronic chlamydia trachomatis laboratory surveillance system in Germany, 2008 to 2014. Euro Surveill 22(6):30459

    Google Scholar 

  70. Gaydos CA (2017) Mycoplasma genitalium: accurate diagnosis is necessary for adequate treatment. J Infect Dis 216(2):S406–S411

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Caruso G, Giammanco A, Virruso R, Fasciana T (2021) Current and future trends in the laboratory diagnosis of sexually transmitted infections. Int J Environ Res Public Health 18(3):1038. https://doi.org/10.3390/ijerph18031038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tabrizi SN, Unemo M, Golparian D et al (2013) Analytical evaluation of GeneXpert CT/NG, the first genetic point-of-care assay for simultaneous detection of Neisseria gonorrhoeae and chlamydia trachomatis. J Clin Microbiol 51:1945–1947

    PubMed  PubMed Central  Google Scholar 

  73. Chen X, Huang L, Zhou Q, Tan Y, Tan X, Dong S (2021) A nanoparticle-based biosensor combined with multiple cross displacement amplification for the rapid and visual diagnosis of Neisseria gonorrhoeae in clinical application. Front Microbiol 12:747140

    PubMed  PubMed Central  Google Scholar 

  74. Chen X, Zhou Q, Wu X, Wang S, Liu R, Dong S, Yuan W (2021) Visual and rapid diagnosis of Neisseria gonorrhoeae using loop-mediated isothermal amplification combined with a polymer nanoparticle-based biosensor in clinical application. Front Mol Biosci 8:702134

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Van Der Pol B, Gaydos CA (2021) A profile of the binx health io® molecular point-of-care test for chlamydia and gonorrhea in women and men. Expert Rev Mol Diagn 21(9):861–868. https://doi.org/10.1080/14737159.2021.1952074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Carter E, Davis SA, Hill DJ (2022) Rapid detection of Neisseria gonorrhoeae genomic DNA using gold nanoprobes which target the gonococcal DNA uptake sequence. Front Cell Infect Microbiol 12:920447

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Tabrizi SN, Su J, Bradshaw CS et al (2017) Prospective evaluation of ResistancePlus MG, a new multiplex quantitative PCR assay for detection of mycoplasma genitalium and macrolide resistance. J Clin Microbiol 55(6):1915–1919

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Grütter AE, Lafranca T, Sigg AP, Mariotti M, Bonkat G, Braissant O (2021) Detection and drug susceptibility testing of Neisseria gonorrhoeae using isothermal microcalorimetry. Microorganisms 9(11):2337. https://doi.org/10.3390/microorganisms9112337

    Article  PubMed  PubMed Central  Google Scholar 

  79. Golparian D, Unemo M (2022) Antimicrobial resistance prediction in Neisseria gonorrhoeae: current status and future prospects. Expert Rev Mol Diagn 22(1):29–48. https://doi.org/10.1080/14737159.2022.2015329

    Article  CAS  PubMed  Google Scholar 

  80. Podbielski A, Mauch H, Kniehl E, Herrmann M, Rüssmann H (Hrsg) (2011) MIQ 11a: Genitalinfektionen, Teil II Infektionserreger: Bakterien, Qualitätsstandards in der mikrobiologisch-infektiologischen Diagnostik, 2. Aufl. Urban & Fischer Verlag, München

    Google Scholar 

  81. https://www.eucast.org/. Zugegriffen: 1. Aug. 2023

  82. Unemo M, Ross J, Serwin AB, Gomberg M, Cusini M, Jensen JS (2020) 2020 European guideline for the diagnosis and treatment of gonorrhoea in adults. Int J STD Aids. https://doi.org/10.1177/0956462420949126

    Article  PubMed  Google Scholar 

  83. https://www.dstig.de/DSTIG-Leitfaden_Auflage_04_2023-2024.pdf. Zugegriffen: 01.08.

  84. Unemo M, Golparian D, Eyre DW (2019) Antimicrobial resistance in Neisseria gonorrhoeae and treatment of gonorrhea. Methods Mol Biol 1997:37–58

    CAS  PubMed  Google Scholar 

  85. Pleininger S, Indra A, Golparian D, Heger F, Schindler S, Jacobsson S, Heidler S, Unemo M (2022) Extensively drug-resistant (XDR) Neisseria gonorrhoeae causing possible gonorrhoea treatment failure with ceftriaxone plus azithromycin in Austria, April 2022. Euro Surveill 27(24):2200455. https://doi.org/10.2807/1560-7917.ES.2022.27.24.2200455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lin EY, Adamson PC, Klausner JD (2021) Epidemiology, treatments, and vaccine development for antimicrobial-resistant Neisseria gonorrhoeae: current strategies and future directions. Drugs 81(10):1153–1169. https://doi.org/10.1007/s40265-021-01530-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Unemo M, Seifert HS, Hook EW 3rd, Hawkes S, Ndowa F, Dillon JR (2019) Gonorrhoea. Nat Rev Dis Primers 5(1):79. https://doi.org/10.1038/s41572-019-0128-6

    Article  PubMed  Google Scholar 

  88. Machalek DA, Tao Y, Shilling H, Jensen JS, Unemo M, Murray G, Chow EPF, Low N, Garland SM, Vodstrcil LA, Fairley CK, Hocking JS, Zhang L, Bradshaw CS (2020) Prevalence of mutations associated with resistance to macrolides and fluoroquinolones in mycoplasma genitalium: a systematic review and meta-analysis. Lancet Infect Dis 20(11):1302–1314

    CAS  PubMed  Google Scholar 

  89. Dumke R, Spornraft-Ragaller P (2021) Antibiotic resistance and genotypes of mycoplasma genitalium during a resistance-guided treatment regime in a German university hospital. Antibiotics 10(8):962

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Witkin SS, Minis E, Athanasiou A, Leizer J, Linhares IM (2017) Chlamydia trachomatis: the persistent pathogen. Clin Vaccine Immunol 24(10):e203–17. https://doi.org/10.1128/CVI.00203-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wang L, Hou Y, Yuan H, Chen H (2022) The role of tryptophan in chlamydia trachomatis persistence. Front Cell Infect Microbiol 12:931653. https://doi.org/10.3389/fcimb.2022.931653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Stelzner K, Vollmuth N, Rudel T (2023) Intracellular lifestyle of chlamydia trachomatis and host-pathogen interactions. Nat Rev Microbiol 21(7):448–462. https://doi.org/10.1038/s41579-023-00860-y

    Article  CAS  PubMed  Google Scholar 

  93. Tiplica GS, Radcliffe K, Evans C, Gomberg M, Nandwani R, Rafila A, Nedelcu L, Salavastru C (2015) 2015 European guidelines for the management of partners of persons with sexually transmitted infections. J Eur Acad Dermatol Venereol 29(7):1251–1257. https://doi.org/10.1111/jdv.13181

    Article  PubMed  Google Scholar 

  94. Hansman E, Klausner JD (2023) Approach to managing sex partners of people with sexually transmitted infections. Infect Dis Clin North Am 37(2):405–426. https://doi.org/10.1016/j.idc.2023.02.003

    Article  PubMed  Google Scholar 

  95. Molina JM, Charreau I, Chidiac C, Pialoux G, Cua E, Delaugerre C, Capitant C, Rojas-Castro D, Fonsart J, Bercot B, Bébéar C, Cotte L, Robineau O, Raffi F, Charbonneau P, Aslan A, Chas J, Niedbalski L, Spire B, Sagaon-Teyssier L, Carette D, Mestre SL, Doré V, Meyer L, ANRS IPERGAY Study Group (2018) Post-exposure prophylaxis with doxycycline to prevent sexually transmitted infections in men who have sex with men: an open-label randomised substudy of the ANRS IPERGAY trial. Lancet Infect Dis 18(3):308–317. https://doi.org/10.1016/S1473-3099(17)30725-9

    Article  CAS  PubMed  Google Scholar 

  96. Berçot B, Charreau I, Rousseau C, Delaugerre C, Chidiac C, Pialoux G, Capitant C, Bourgeois-Nicolaos N, Raffi F, Pereyre S, Le Roy C, Senneville E, Meyer L, Bébéar C, Molina JM, ANRS IPERGAY Study Group. (2021) High prevalence and high rate of antibiotic resistance of mycoplasma genitalium infections in men who have sex with men: a substudy of the ANRS IPERGAY pre-exposure prophylaxis trial. Clin Infect Dis 73(7):e2127–e2133. https://doi.org/10.1093/cid/ciaa1832

    Article  CAS  PubMed  Google Scholar 

  97. Luetkemeyer AF, Donnell D, Dombrowski JC, Cohen S, Grabow C, Brown CE, Malinski C, Perkins R, Nasser M, Lopez C, Vittinghoff E, Buchbinder SP, Scott H, Charlebois ED, Havlir DV, Soge OO, Celum C, DoxyPEP Study Team (2023) Postexposure doxycycline to prevent bacterial sexually transmitted infections. N Engl J Med 388(14):1296–1306. https://doi.org/10.1056/NEJMoa2211934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Sánchez-Busó L, Cole MJ, Spiteri G, Day M, Jacobsson S, Golparian D, Sajedi N, Yeats CA, Abudahab K, Underwood A, Bluemel B, Aanensen DM, Unemo M, Centre for Genomic Pathogen Surveillance and the Euro-GASP study group (2022) Europe-wide expansion and eradication of multidrug-resistant Neisseria gonorrhoeae lineages: a genomic surveillance study. Lancet Microbe 3(6):e452–e463. https://doi.org/10.1016/S2666-5247(22)00044-1

    Article  PubMed  Google Scholar 

  99. Lin EY, Adamson PC, Klausner JD (2021) Epidemiology, treatments, and vaccine development for antimicrobial-resistant Neisseria gonorrhoeae: current strategies and future directions. Drugs 81(10):1153–1169. https://doi.org/10.1007/s40265-021-01530-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Petousis-Harris H, Paynter J, Morgan J, Saxton P, McArdle B, Goodyear-Smith F, Black S (2017) Effectiveness of a group B outer membrane vesicle meningococcal vaccine against gonorrhoea in New Zealand: a retrospective case-control study. Lancet. https://doi.org/10.1016/S0140-6736(17)31449-6

    Article  PubMed  Google Scholar 

  101. Bruxvoort KJ, Lewnard JA, Chen LH, Tseng HF, Chang J, Veltman J, Marrazzo J, Qian L (2023) Prevention of Neisseria gonorrhoeae with meningococcal B vaccine: a matched cohort study in southern California. Clin Infect Dis 76(3):e1341–e1349. https://doi.org/10.1093/cid/ciac436

    Article  PubMed  Google Scholar 

  102. Frost I, Sati H, Garcia-Vello P, Hasso-Agopsowicz M, Lienhardt C, Gigante V, Beyer P (2023) The role of bacterial vaccines in the fight against antimicrobial resistance: an analysis of the preclinical and clinical development pipeline. Lancet Microbe 4(2):e113–e125. https://doi.org/10.1016/S2666-5247(22)00303-2

    Article  PubMed  PubMed Central  Google Scholar 

  103. Looker KJ, Booton R, Begum N, Beck E, Shen J, Turner KME, Christensen H (2023) The potential public health impact of adolescent 4CMenB vaccination on Neisseria gonorrhoeae infection in England: a modelling study. BMC Public Health 23(1):1. https://doi.org/10.1186/s12889-022-14670-z

    Article  PubMed  PubMed Central  Google Scholar 

  104. Murray SM, McKay PF (2021) Chlamydia trachomatis: cell biology, immunology and vaccination. Vaccine 39(22):2965–2975. https://doi.org/10.1016/j.vaccine.2021.03.043

    Article  CAS  PubMed  Google Scholar 

  105. Buder S, Lautenschlager S (2020) Gonorrhea and urethritis. In: Plewig G, French L, Ruzicka T, Kaufmann R, Hertl M (Hrsg) Braun-Falco’s dermatology, 1. Aufl. Springer, Berlin, Heidelberg

    Google Scholar 

Weiterführende Literatur

  1. Serra-Pladevall J, Caballero E, Roig G et al (2015) Comparison between conventional culture and NAATs for the microbiological diagnosis in gonococcal infection. Diagn Microbiol Infect Dis 83:341–343

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne Buder.

Ethics declarations

Interessenkonflikt

S. Buder gibt an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von der Autorin keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien. Für Bildmaterial oder anderweitige Angaben innerhalb des Manuskripts, über die Patient/-innen zu identifizieren sind, liegt von ihnen und/oder ihren gesetzlichen Vertretern/Vertreterinnen eine schriftliche Einwilligung vor.

Additional information

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buder, S. Urethritis – Erregerspektrum, Diagnostik und Therapie. Dermatologie 74, 835–850 (2023). https://doi.org/10.1007/s00105-023-05230-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00105-023-05230-6

Schlüsselwörter

Keywords

Navigation