Skip to main content
Log in

Hautalterung – zelluläre Seneszenz

Wohin geht die Reise?

Skin aging—cellular senescence

What is the future?

  • Leitthema
  • Published:
Die Dermatologie Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Zelluläre Seneszenz ist die Hauptursache für die Haut- und Organalterung mit Ausprägung zahlreicher altersassoziierter Erkrankungen.

Fragestellung

Welche innovativen therapeutischen Strategien zum Einsatz von Senolytika, Senomorphika und Zelltherapien gibt es, um die Organalterung und die Hautalterung zu vermindern und eine Rejuvenierung zu erzielen.

Material und Methode

Es werden eine Auswertung und Literaturübersicht zur Wirkweise von Senolytika und Senomorphika, eine Diskussion von Grundlagenarbeiten und klinische Perspektiven gegeben.

Ergebnisse

Verschiedene Ursachen führen über mitochondriale Dysfunktion und Aktivierung von Alterungssignalwegen zur zellulären Seneszenz mit einem Abbau des dermalen Bindegewebes und Unterdrückung der regenerativen Stammzellnischen.

Schlussfolgerungen

Depletion von seneszenten Zellen hemmen die Alterung und können zur Rejuvenierung der Haut, anderer Organe und deren Funktion führen. Die Eliminierung der seneszenten Zellen durch Zellen des Immunsystems ist im Alter gestört. Einzelne Senolytika und Senomorphika sind bereits zugelassen.

Abstract

Background

Cellular senescence is the main cause of skin and organ aging and is associated with a wide range of aging-related diseases.

Objectives

To understand which senolytics, senomorphics, and cell-based therapies have been developed to alleviate and even rejuvenate skin aging and reduce cellular senescence.

Methods

Basic literature for the mode of action of senolytics and senomorphics and their clinical perspectives in daily routine are discussed.

Results

Various causes lead to mitochondrial dysfunction and the activation of pro-aging signaling pathways, which eventually lead to cellular senescence with degradation of structural proteins of the dermal connective tissue and severe suppression of regenerative stem cell niches of the skin.

Conclusions

Depletion of senescent cells suppress skin aging and enforce rejuvenation of skin and other organs and their function. The removal of senescent cells by cells of the native immune system is severely disturbed during aging. Selected senolytics and senomorphics are approved and are already on the market.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Schlussbericht der Enquête-Kommission „Demographischer Wandel – Herausforderungen unserer älter werdenden Gesellschaft an den Einzelnen und die Politik“ Deutscher Bundestag Drucksache 14/8800 14. Wahlperiode 28. 03. 2002

  2. Baker DJ, Wijshake T, Tchkonia T et al (2011) Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479(7372):232–236

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Campisi J (2005) Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120(4):513–522

    CAS  PubMed  Google Scholar 

  4. Campisi J, Kapahi P, Lithgow GJ et al (2019) From discoveries in ageing research to therapeutics for healthy ageing. Nature 571(7764):183–193

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Childs BG, Durik M, Baker DJ et al (2015) Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nat Med 21(12):1424–1435

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Childs BG, Gluscevic M, Baker DJ et al (2017) Senescent cells: an emerging target for diseases of ageing. Nat Rev Drug Discov 16(10):718–735

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Ellison-Hughes GM (2020) First evidence that senolytics are effective at decreasing senescent cells in humans. EBioMedicine 56:102473

    PubMed  PubMed Central  Google Scholar 

  8. Kirkland JL, Tchkonia T (2020) Senolytic drugs: from discovery to translation. J Intern Med 288(5):518–536

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Gruber F, Kremslehner C, Eckart L et al (2020) Cell aging and cellular senescence in skin aging—Recent advances in fibroblast and keratinocyte biology. Exp Gerontol 130:110780

    CAS  PubMed  Google Scholar 

  10. Gunn DA, de Craen AJM, Dick JL et al (2013) Facial appearance reflects human familial longevity and cardiovascular disease risk in healthy individuals. J Gerontol A Biol Sci Med Sci 68(2):145–152

    PubMed  Google Scholar 

  11. Castelo-Branco C, Pons F, Gratacós E et al (1994) Relationship between skin collagen and bone changes during aging. Maturitas 18(3):199–206

    CAS  PubMed  Google Scholar 

  12. Makrantonaki E, Schönknecht P, Hossini AM et al (2010) Skin and brain age together: The role of hormones in the ageing process. Exp Gerontol 45(10):801–813

    CAS  PubMed  Google Scholar 

  13. Makrantonaki E, Zouboulis CC, German National Genome Research Network 2 (2007) The skin as a mirror of the aging process in the human organism—state of the art and results of the aging research in the German National Genome Research Network 2 (NGFN-2). Exp Gerontol 42(9):879–886

    CAS  PubMed  Google Scholar 

  14. Blauschun R, Brenneusen P, Wlaschek M et al (2000) The first peak of the UVB irradiation-dependent biphasic induction of vascular endothelial growth factor (VEGF) is due to phosphorylation of the epidermal growth factor receptor and independent of autocrine transforming growth factor α. FEBS Lett 474(2–3):195–200

    Google Scholar 

  15. Krutman J, Bouloc A, Sore G et al (2017) The skin aging exposome. J Dermatol Sci 85(3):152–161

    Google Scholar 

  16. Farsam V, Basu A, Gatzka M et al (2016) Senescent fibroblast-derived Chemerin promotes squamous cell carcinoma migration. Oncotarget 50:83554–83569

    Google Scholar 

  17. Scharffetter-Kochanek K, Schüller J, Meewes C, Hinrichs R, Eich D, Eming S, Wenk J, Wlaschek M (2003) Das chronisch venöse Ulcus cruris. Pathogenese und Bedeutung des „aggressiven Mikromilieus“. J Dtsch Dermatol Ges 1(1):58–67

    PubMed  Google Scholar 

  18. Schneider LA, Wlaschek M, Scharffetter-Kochanek K (2003) Hautalterung-Klinik und Pathogenese. J Dtsch Dermatol Ges 1(3):223–232

    PubMed  Google Scholar 

  19. Makrantonaki E, Steinhagen-Thiessen E, Nieczaj R et al (2017) Prevalence of skin diseases in hospitalized geriatric patient. Z Gerontol Geriatr 50(6):524–531

    CAS  PubMed  Google Scholar 

  20. Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cells strains. Exp Cell Res 25:585–621

    CAS  PubMed  Google Scholar 

  21. Maity P, Singh K, Krug L et al (2021) Persistent JunB activation in fibroblasts disrupts stem cell niche interactions enforcing skin aging. Cell Rep 36(9):109634

    CAS  PubMed  Google Scholar 

  22. Zou Z, Long X, Zhao Q et al (2021) A single-cell transcriptomic atlas of human skin aging. Dev Cell 56(3):383–397

    CAS  PubMed  Google Scholar 

  23. Wlaschek M, Maity P, Makrantonaki E, Scharffetter-Kochanek K (2021) Connective tissue and fibroblast senescence in skin aging. J Invest Dermatol 141(4):985–992

    CAS  PubMed  Google Scholar 

  24. Bodnar AG, Ouellette M, Frolkis M et al (1998) Extension of life-span by introduction of telomerase into normal human cells. Science 279:349–352

    CAS  PubMed  Google Scholar 

  25. Harley CB, Futcher AB, Greider CW (1990) Telomeres shorten during ageing of human fibroblasts. Nature 345:458–460

    CAS  PubMed  Google Scholar 

  26. Yu GL, Bradley JD, Attardi LD et al (1990) In vivo alteration of telomere sequences and senescence caused by mutated Tetrahymena telomerase RNAs. Nature 344:126–132

    CAS  PubMed  Google Scholar 

  27. Berneburg M, Gattermann N, Stege H et al (1997) Chronically ultraviolet-exposed human skin shows a higher mutation frequency of mitochondrial DNA as compared to unexposed skin and the hematopoietic system. Photochem Photobiol 66:271–275

    CAS  PubMed  Google Scholar 

  28. Birch J, Barnes PJ, Passos JF (2018) Mitochondria, telomeres and cell senescence: implications for lung ageing and disease. Pharmacol Ther 183:34–49

    CAS  PubMed  Google Scholar 

  29. Passos JF, Saretzki G, von Zglinicki T (2007) DNA damage in telomeres and mitochondria during cellular senescence: is there a connection? Nucleic Acids Res 35:7505–7513

    CAS  PubMed  PubMed Central  Google Scholar 

  30. d’Adda di Fagagna F (2008) Living on a break: cellular senescence as a DNA damage response. Nat Rev Cancer 8:512–522

    PubMed  Google Scholar 

  31. Hoeijmakers JHJ (2009) DNA damage, aging, and cancer. N Engl J Med 361:475–485

    Google Scholar 

  32. da Silva PFL, Schumacher B (2019) DNA damage responses in ageing. Open Biol 9:190168

    PubMed  PubMed Central  Google Scholar 

  33. Gorgoulis V, Adams PD, Alimonti A et al (2019) Cellular senescence: defining a path forward. Cell 179:813–827

    CAS  PubMed  Google Scholar 

  34. Braumüller H, Wieder T, Brenner E et al (2013) T‑helper-1-cell cytokines drive cancer into senescence. Nature 494(7437):361–365

    PubMed  Google Scholar 

  35. Chondrogianni N, Gonos ES (2010) Proteasome function determines cellular homeostasis and the rate of aging. Adv Exp Med Biol 694:38–46

    CAS  PubMed  Google Scholar 

  36. Catalgol B, Grune T (2009) Protein pool maintenance during oxidative stress. Curr Pharm Des 15:3043–3051

    CAS  PubMed  Google Scholar 

  37. Eckhart L, Tschachler E, Gruber F (2019) Autophagic control of skin aging. Front Cell Dev Biol 7:143

    PubMed  PubMed Central  Google Scholar 

  38. Gu Y, Han J, Jiang C et al (2020) Biomarkers, oxidative stress and autophagy in skin aging. Ageing Res Rev 59:101036

    CAS  PubMed  Google Scholar 

  39. Rinnerthaler M, Bischof J, Streubel MK et al (2015) Oxidative stress in aging human skin. Biomolecules 5:545–589

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Treiber N, Maity P, Singh K et al (2011) Accelerated aging phenotype in mice with conditional deficiency for mitochondrial superoxide dismutase in the connective tissue. Aging Cell 10:239–254

    CAS  PubMed  Google Scholar 

  41. Demaria M, Desprez PY, Campisi J et al (2015) Cell autonomous and non-cell autonomous effects of senescent cells in the skin. J Invest Dermatol 135(7):1722–1726

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Ovadya Y, Krizhanovsky V (2018) Strategies targeting cellular senescence. J Clin Invest 128:1247–1254

    PubMed  PubMed Central  Google Scholar 

  43. Meyer P, Maity P, Burkovski A et al (2017) A model of the onset of the senescence associated secretory phenotype after DNA damage induced senescence. PLoS Comput Biol 13(12):e1005741

    PubMed  PubMed Central  Google Scholar 

  44. Lozano-Torres B, Estepa-Fernández A, Rovira M et al (2019) The chemistry of senescence. Nat Rev Chem 3:426–441

    CAS  Google Scholar 

  45. Acosta JC, Banito A, Wuestefeld T et al (2013) A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat Cell Biol 15:978–990

    CAS  PubMed  PubMed Central  Google Scholar 

  46. da Silva PFL, Ogrodnik M, Kucheryavenko O et al (2019) The bystander effect contributes to the accumulation of senescent cells in vivo. Aging Cell 18:e12848

    PubMed  Google Scholar 

  47. Nelson G, Kucheryavenko O, Wordsworth J et al (2018) The senescent bystander effect is caused by ROS-activated NF-kB signaling. Mech Ageing Dev 170:30–36

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Weinmüllner R, Zbiral B, Becirovic A et al (2020) Organotypic human skin culture models constructed with senescent fibroblasts show hallmarks of skin aging. NPJ Aging Mech Dis 6:4

    PubMed  PubMed Central  Google Scholar 

  49. Herbig U, Ferreira M, Condel L et al (2006) Cellular senescence in aging primates. Science 311(5765):1257

    CAS  PubMed  Google Scholar 

  50. Krishnamurthy J, Torrice C, Ramsey MR et al (2004) Ink4a/Arf expression is a biomarker of aging. J Clin Invest 114:1299–1307

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Dimri GP, Lee X, Basile G et al (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 92:9363–9367

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Ressler S, Bartkova J, Niederegger H et al (2006) p16 INK4A is a robust in vivo biomarker of cellular aging in human skin. Aging Cell 5:379–389

    CAS  PubMed  Google Scholar 

  53. Ho CY, Dreesen O (2021) Faces of cellular senescence in skin aging. Mech Ageing Dev 198:111525

    CAS  PubMed  Google Scholar 

  54. Tuttle CSL, Waaijer MEC, Slee-Valentijn MS et al (2020) Cellular senescence and chronological age in various human tissues: a systematic review and meta-analysis. Aging Cell 19:e13083

    CAS  PubMed  Google Scholar 

  55. Ovadya Y, Landsberger T, Leins H et al (2018) Impaired immune surveillance accelerates accumulation of senescent cells and aging. Nat Commun 9:5435

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Hazeldine J, Hampson P, Lord JM (2012) Reduced release and binding of perforin at the immunological synapse underlies the age-related decline in natural killer cell cytotoxicity. Aging Cell 11:751–759

    CAS  PubMed  Google Scholar 

  57. Pereira BI, Devine OP, Vukmanovic-Stejic M et al (2019) Senescent cells evade immune clearance via HLA-E-mediated NK and CD8(+) T cell inhibition. Nat Commun 10:2387

    PubMed  PubMed Central  Google Scholar 

  58. Baker DJ, Childs BG, Durik M et al (2016) Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature 530:184–189

    CAS  PubMed  PubMed Central  Google Scholar 

  59. van Deursen JM (2014) The role of senescent cells in aging. Nature 509(7501):439–446

    PubMed  PubMed Central  Google Scholar 

  60. Zhou X, Franklin RA, Adler M et al (2018) Circuit design features of a stable two-cell system. Cell 172:744–757

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Fuhrmann-Stroissnigg H, Ling YY, Zhao J et al (2017) Identification of HSP90 inhibitors as a novel class of senolytics. Nat Commun 8:422

    PubMed  PubMed Central  Google Scholar 

  62. Kim H, Jang J, Song MJ et al (2022) Attenuation of intrinsic aging of the skin via elimination of senescent dermal fibroblasts. J Eur Acad Dermatol Venereol 36:1125–1135

    CAS  PubMed  Google Scholar 

  63. Chang J, Wang Y, Shao L et al (2016) Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat Med 22:78–83

    CAS  PubMed  Google Scholar 

  64. Kim HN, Chang J, Shao L et al (2017) DNA damage and senescence in osteoprogenitors expressing Osx1 may cause their decrease with age. Aging Cell 16:693–703

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Raffaele M, Vinciguerra M (2022) The costs and benefits of senotherapeutics for human health. Lancet Healthy Longev 3:e67–e77

    PubMed  Google Scholar 

  66. Justice JN, Nambiar AM, Tchkonia T et al (2019) Senolytics in idiopathic pulmonary fibrosis: results from a first-inhuman, open-label, pilot study. EBioMedicine 40:554–563

    PubMed  PubMed Central  Google Scholar 

  67. Hickson LJ, Langhi Prata LGP, Bobart SA et al (2019) Senolytics decrease senescent cells in humans: preliminary report from a clinical trial of dasatinib plus quercetin in individuals with diabetic kidney disease. EBioMedicine 47:446–456

    PubMed  PubMed Central  Google Scholar 

  68. Lämmermann I, Terlecki-Zaniewicz L, Weinmüllner R et al (2018) Blocking negative effects of senescence in human skin fibroblasts with a plant extract. NPJ Aging Mech Dis 11(4):4

    Google Scholar 

  69. Johmura Y, Yamanaka T, Omori S et al (2021) Senolysis by glutaminolysis inhibition ameliorates various age-associated disorders. Science 371(6526):235–243

    Google Scholar 

  70. Takaya K, Ishii T, Asou T et al (2022) Glutaminase inhibitors rejuvenate human skin via clearance of senescent cells: a study using a mouse/human chimeric model. Aging 14(22):8914–8926

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Guerrero A, Herranz N, Sun B et al (2019) Cardioglykosides are broad spectrum senolytics. Nat Metab 1:1074–1088

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Triana-Martínez F, Picallos-Rabina P, Da Silva-Álvarez S et al (2019) Identification and characterization of cardiac-glycosides as senolytic compound. Nat Commun 10(1):4731

    PubMed  PubMed Central  Google Scholar 

  73. Baar MP, Brandt RMC, Putavet DA et al (2017) Targeted apoptosis of the senescent cell restores tissue homeostasis in response to chemotoxicity and aging. Cell 169:132–147

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Ozsvari B, Nuttall JR, Sotgia F et al (2018) Azithromycin and Roxithromycin define a new family of ”senolytic“ drugs that target senescent human fibroblasts. Aging 10(11):3294–3307

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Vallet-Regí M, Colilla M, Izquierdo-Barba I et al (2017) Mesoporous silica nanoparticles for drug delivery: current insights. Molecules 23(1):47

    PubMed  PubMed Central  Google Scholar 

  76. Munoz-Espin D, Rovira M, Galiana I et al (2018) A versatile drug delivery system targeting senescent cells. EMBO Mol Med 10(9):e9355

    PubMed  PubMed Central  Google Scholar 

  77. Amor C, Feucht J, Leibold J et al (2020) Senolytic CAR T cells reverse senescence-associated pathologies. Nature 583:127–132

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Klareskog L, van der Heijde D, de Jager J et al (2004) Therapeutic effect of the combination of etanercept and methotrexate compared with each treatment alone in patients with rheumatoid arthritis: double-blind randomised controlled trial. Lancet 363(9410):675–681

    CAS  PubMed  Google Scholar 

  79. Kuemmerle-Deschner JB, Ramos E, Blank N et al (2011) Canakinumab (ACZ885, a fully human IgG1 anti-IL-1β mAb) induces sustained remission in pediatric patients with cryopyrin-associated periodic syndrome (CAPS). Arthritis Res Ther 13(1):R34

    CAS  PubMed  PubMed Central  Google Scholar 

  80. van Rhee F, Wong RS, Munshi N et al (2014) Siltuximab for multicentric Castleman’s disease: a randomised, double-blind, placebo-controlled trial. Lancet Oncol 15(9):966–974

    PubMed  Google Scholar 

  81. Mirza R, Koh TJ (2011) Dysregulation of monocyte/macrophage phenotype in wounds of diabetic mice. Cytokine 56:256–264

    CAS  PubMed  Google Scholar 

  82. Vander Beken S, de Vries JC, Meier-Schiesser B et al (2019) Newly defined ATP-binding cassette subfamily B Member 5 positive dermal mesenchymal stem cells promote healing of chronic iron-overload wounds via secretion of interleukin‑1 receptor antagonist. Stem Cells 37:1057–1074

    CAS  PubMed  Google Scholar 

  83. Kerstan A, Dieter K, Niebergall-Roth E et al (2022) Translational development of ABCB5+ dermal mesenchymal stem cells for therapeutic induction of angiogenesis in non-healing diabetic foot ulcers. Stem Cell Res Ther 13(1):455

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Goldberg RB, Aroda VR, Bluemke DA et al (2017) Effect of long-term metformin and lifestyle in the diabetes prevention program and its outcome study on coronary artery calcium. Circulation 136:52–64

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Svensson E, Baggesen LM, Johnsen SP et al (2017) Early glycemic control and magnitude of HbA(1c) reduction predict cardiovascular events and mortality: population-based cohort study of 24,752 metformin initiators. Diabetes Care 40:800–807

    PubMed  Google Scholar 

  86. Harrison DE et al (2009) Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460:392–395

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Lamming DW, Ye L, Sabatini DM et al (2013) Rapalogs and mTOR inhibitors as anti-aging therapeutics. J Clin Invest 123:980–989

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Martin-Montalvo A, Mercken EM, Mitchell SJ et al (2013) Metformin improves healthspan and lifespan in mice. Nat Commun 4:2192

    PubMed  Google Scholar 

  89. Wilkinson JE et al (2012) Rapamycin slows aging in mice. Aging Cell 11:675–682

    CAS  PubMed  Google Scholar 

  90. Mannick JB, Del Guidice G, Lattanzi M et al (2014) mTOR inhibition improves immune function in the elderly. Sci Transl Med 6:268

    Google Scholar 

  91. Mannick JB, Morris M, Hockey H‑UP et al (2018) TORC1 inhibition enhances immune function and reduces infections in the elderly. Sci Transl Med 10:449

    Google Scholar 

  92. Mannick JB, Teo G, Bernardo P et al (2021) Targeting the biology of ageing with mTOR inhibitors to improve immune function in older adults: phase 2b and phase 3 randomised trials. Lancet Healthy Longev 2:e250–e262

    PubMed  PubMed Central  Google Scholar 

  93. Chung CL, Lawrence I, Hoffman M et al (2019) Topical rapamycin reduces markers of senescence and aging in human skin: an exploratory, prospective, randomized trial. GeroScience 41:861–869

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Leins H, Mulaw M, Eiwen K et al (2018) Aged murine hematopoietic stem cells drive aging-associated immune remodeling. Blood 132:565–576

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Larbi A, Franceschi C, Mazzatti D et al (2008) Aging of the immune system as a prognostic factor for humanlongevity. Physiology (Bethesda) 23:64–74

    CAS  PubMed  Google Scholar 

  96. Prata LGPL, Ovsyannikova IG, Tchkonia T et al (2018) Senescent cell clearance by the immune system: Emerging therapeutic opportunities. Semin Immunol 40:101275

    CAS  PubMed  Google Scholar 

  97. Yousefzadeh MJ, Flores RR, Zhu Y et al (2021) An aged immune system drives senescence and ageing of solid organs. Nature 594:100–105

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Chen X‑K, Yi Z‑N, Wong GT‑C et al (2021) Is exercise a senolytic medicine? A systematic review. Aging Cell 20(1):e13294. https://doi.org/10.1111/acel.13294

    Article  CAS  PubMed  Google Scholar 

  99. Crane JD, MacNeil LG, Lally JS et al (2015) Exercise-stimulated interleukin-15 is controlled by AMPK and regulatesskin metabolism and aging. Aging Cell 14(4):625–634

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Aguado J, Sola-Carvajal A, Cancila V et al (2019) Inhibition of DNA-damage response at telomeres approves the detrimental phenotypes of Hutchinson-Gilford-progeria-syndrome. Nat Commun 10(1):4990

    PubMed  PubMed Central  Google Scholar 

Download references

Danksagung

Die Autoren danken Frau Michaela Kirschner und Herrn Heiko Grandel für ihre Unterstützung bei der Erstellung des Manuskriptes und der Zusammenstellung der Abbildungen. K. Scharffetter-Kochanek dankt der Deutschen Forschungsgemeinschaft für die Unterstützung des SFB 1506 „Aging at Interfaces“ und das Teilprojekt C02, Projekt-ID 450627322.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin Scharffetter-Kochanek.

Ethics declarations

Interessenkonflikt

K. Scharffetter-Kochanek hat eine unabhängige Forschungsunterstützung der Firma RHEACELL bekommen. Y. Wang, E. Makrantonaki, D. Crisan, M. Wlaschek, H. Geiger und P. Maity geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autor/-innen keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scharffetter-Kochanek, K., Wang, Y., Makrantonaki, E. et al. Hautalterung – zelluläre Seneszenz. Dermatologie 74, 645–656 (2023). https://doi.org/10.1007/s00105-023-05201-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00105-023-05201-x

Schlüsselwörter

Keywords

Navigation