Skip to main content
Log in

Mikro- versus makrofokussierter Ultraschall zum Bodycontouring

Microfocussed vs. macrofocussed ultrasound for body contouring

  • Leitthema
  • Published:
Die Dermatologie Aims and scope Submit manuscript

Zusammenfassung

Fokussierter Ultraschall ist in der Lage, Gewebe bis auf 65–70 °C in kleinen mikroskopischen Bereichen zu erhitzen, eine Technik, die nicht nur zur Zerstörung von Oberflächengewebe, sondern auch zum Fettabbau eingesetzt werden kann. Die Fokussierung von Schallwellen nach dem Prinzip einer Strahlenbündelung erfolgt ohne Verletzung der Haut. Die Penetrationstiefe der Koagulation hängt dabei von der Wellenlänge ab. Neu sind Wellenlängen, die Penetrationen von 6 mm, 9 mm und sogar 13 mm und damit auch tiefere Schichten der Dermis sowie das Fettgewebe erreichen, dadurch ermöglichen, Fettzellen zu beseitigen und letztlich zur Umfangsreduktion, aber auch zusätzlich zur Straffung führen. Die Wirksamkeit ist durch mehrere Studien belegt.

Abstract

Focussed ultrasound is capable of heating tissue in small microscopic areas up to 65–70 °C and is a technique that can be used not only for destruction of superficial tissue but also for fat reduction. The focussing of sound waves according to the principle of a bundling of rays is carried out without injury to the skin. The penetration depth of the coagulation depends on the wavelength. Wavelengths that reach penetration depths of 6mm, 9mm and even 13mm and therefore deeper layers of the dermis and fat tissue are new. These enable fat cells to be eliminated and ultimately lead to girth reduction and also additionally to tightening. The effectiveness has been confirmed by several studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Atiyeh BS, Fadul RJ, Chahine F (2020) Cryolipolysis (CLL) for reduction of localized subcutaneous fat: review of the literature and an evidence-based analysis. Aesthetic Plast Surg 44(6):2163–2172 (Dec)

    Article  PubMed  Google Scholar 

  2. Levy AS, Grant RT, Rothaus KO (2016) Radiofrequency physics for minimally invasive aesthetic surgery. Clin Plast Surg 43(3):551–556 (Jul)

    Article  PubMed  Google Scholar 

  3. Gadsden E, Aguilar MT, Smoller BR, Jewell ML (2011) Evaluation of a novel highintensity focused ultrasound device for ablating subcutaneous adipose tissue for noninvasive body contouring: safety studies in human volunteers. Aesthetic Surg J 31(4):401–410 (May)

    Article  Google Scholar 

  4. Avci P, Nyame TT, Gupta GK, Sadasivam M, Hamblin MR (2013) Low-level laser therapy for fat layer reduction: a comprehensive review. Lasers Surg Med 45(6):349–357 (Aug)

    Article  PubMed  PubMed Central  Google Scholar 

  5. Widgerow AD, Kilmer SL, Garruto JA, Stevens WG (2019) Non-surgical fat reduction and topical modulation of adipose tissue physiology. J Drugs Dermatol 18(4):375–380 (Apr)

    PubMed  Google Scholar 

  6. Juhász M, Korta D, Mesinkovska NA (2018) A review of the use of ultrasound for skin tightening, body contouring, and Cellulite reduction in dermatology. Dermatol Surg 44(7):949–963. https://doi.org/10.1097/DSS.0000000000001551

    Article  CAS  PubMed  Google Scholar 

  7. Teitelbaum SA, Burns JL, Kubota J, Matsuda H, Otto MJ, Shirakabe Y et al (2007) Noninvasive body contouring by focused ultrasound: safety and efficacy of the Contour I device in a multicenter, controlled, clinical study. Plast Reconstr Surg 120(3):779–789

    Article  CAS  PubMed  Google Scholar 

  8. Ascher B (2010) Safety and efficacy of UltraShape Contour I treatments to improve the appearance of body contours: multiple treatments in shorter intervals. Aesthetic Surg J 30(2):217–224

    Article  Google Scholar 

  9. Jewell ML, Weiss RA, Baxter RA, Cox SE, Dover JS, Donofrio LM et al (2012) Safety and tolerability of high-intensity focused ultrasonography for noninvasive body sculpting: 24-week data from a randomized, sham-controlled study. Aesthetic Surg J 32(7):868–876

    Article  Google Scholar 

  10. Milanese C, Cavedon V, Piscitelli F, Zancanaro C (2014) Effect of low-intensity, lowfrequency ultrasound treatment on anthropometry, subcutaneous adipose tissue, and body composition of young normal weight females. J Cosmet Dermatol 13(3):202–207 (Sep)

    Article  PubMed  Google Scholar 

  11. Shek SYN, Yeung CK, Chan JCY, Chan HHL (2014) Efficacy of high-intensity focused ultrasonography for noninvasive body sculpting in Chinese patients. Lasers Surg Med 46(4):263–269 (Apr)

    Article  PubMed  Google Scholar 

  12. Tonucci LB, Mourão DM, Ribeiro AQ, Bressan J (2014) Noninvasive body contouring:biological and aesthetic effects of low-frequency, low-intensity ultrasound device. Aesthetic Plast Surg 38(5):959–967

    Article  PubMed  Google Scholar 

  13. Moravvej H, Akbari Z, Mohammadian S, Razzaghi Z (2015) Focused ultrasound lipolysis in the treatment of abdominal cellulite: an open-label study. J Lasers Med Sci 6(3):102–105

    Article  PubMed  PubMed Central  Google Scholar 

  14. Coleman WP 3rd, Coleman W 4th, Weiss RA, Kenkel JM, Ad-El DD, Amir R (2017) A multicenter controlled study to evaluate multiple treatments with Nonthermal focused ultrasound for Noninvasive fat reduction. Dermatologic Surg 43(1):50–57

    Article  CAS  Google Scholar 

  15. Ko EJ, Hong JY, Kwon TR, Choi EJ, Jang YJ, Choi SY et al (2017) Efficacy and safety of non-invasive body tightening with high-intensity focused ultrasound (HIFU). Ski Res Technol 23(4):558–562

    Article  CAS  Google Scholar 

  16. Dhillon B, Patel T (2018) An open-label, single-center, prospective evaluation of a novel noninvasive ultrasound body sculpting device. J Clin Aesthet Dermatol 11(6):41–45 (Jun)

    PubMed  PubMed Central  Google Scholar 

  17. Wilkerson EC, Bloom BS, Goldberg DJ (2018) Clinical study to evaluate the performance of a noninvasive focused ultrasound device for thigh fat and circumference reduction compared to control. J Cosmet Dermatol 17(2):157–161 (Apr)

    Article  PubMed  Google Scholar 

  18. Verner I (2021) A novel nonfocused pulsed ultrasound technology for noninvasive circumference reduction. Dermatol Ther 34(5):e15101

    Article  PubMed  Google Scholar 

  19. Adatto MA, Adatto-Neilson RM, Morren G (2014) Reduction in adipose tissue Volume using a new high-power radiofrequency technology combined with infrared light and mechanical manipulation for body contouring. Lasers Med Sci 29:1627–1631

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bloom BS, Emer J, Goldberg DJ (2012) Assessment of safety and efficacy of a bipolar Fractional radiofrequency device in the treatment of photodamaged skin. J Cosmet Laser Ther 14:208–211

    Article  PubMed  Google Scholar 

  21. Gavrilov LR, Tsirulnikov EM, Davies IA (1996) Application of focused ultrasound for the stimulation of neural structures. Ultrasound Med Biol 22(2):179–192

    Article  CAS  PubMed  Google Scholar 

  22. Ter Haar G (2016) HIFU tissue ablation: concept and devices. Adv Exp Med Biol 880:3–20

    Article  CAS  PubMed  Google Scholar 

  23. Jewell ML, Desilets C, Smoller BR (2011) Evaluation of a novel high-intensity focused ultrasound device:preclinical studies in a porcine model. Aesthet Surg J 31:429–434

    Article  PubMed  Google Scholar 

  24. Kim HJ, Kim HG, Zheng Z, Park HJ, Yoon JH, Oh W, Lee CW, Cho SB (2015) Coagulation and ablation patterns of high-intensity focused ultrasound on a tissue-mimicking phantom and cadaveric skin. Lasers Med Sci 30:2251–2258

    Article  PubMed  Google Scholar 

  25. Kwon TR, Im S, Jang YJ, Oh CT, Choi EJ, Jung SJ, Hong H, Choi YS, Choi SY, Kim YS, Kim BJ (2017) Improved methods for evaluating pre-clinical and histological effects of subcutaneous fat reduction using high-intensity focused ultrasound in a. Porcine Model Ski Res Technol 23(2):194–201. https://doi.org/10.1111/srt.12319

    Article  Google Scholar 

  26. Guth F, Bitencourt S, Bedinot C, Sinigaglia G, Tassinary JAF (2018) Immediate effect and safety of HIFU single treatment for male subcutaneous fat reduction. J Cosmet Dermatol 17(3):385–389. https://doi.org/10.1111/jocd.12466

    Article  PubMed  Google Scholar 

  27. Hong JY, Ko EJ, Choi SY, Kwon TR, Kim JH, Kim SY, Kim BJ (2020) Efficacy and safety of high-intensity focused ultrasound for Noninvasive abdominal subcutaneous fat reduction. Dermatol Surg 46(2):213–219. https://doi.org/10.1097/DSS.0000000000002016

    Article  CAS  PubMed  Google Scholar 

  28. Filippou A, Damianou C (2022) Experimental evaluation of high intensity focused ultrasound for fat reduction of ex vivo porcine adipose tissue. Ultrasound 25(4):815–825. https://doi.org/10.1007/s40477-022-00663-6

    Article  Google Scholar 

  29. Gold MH, Coleman IVWP, Coleman W III, Weiss R (2019) A randomized, controlled multicenter study evaluating focused ultrasound treatment for fat reduction in the flanks. J Cosmet Laser Ther 21(1):44–48

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Fritz.

Ethics declarations

Interessenkonflikt

K. Fritz, C. Salavastru und G.-S. Tiplica geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autor/-innen keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien. Für Bildmaterial oder anderweitige Angaben innerhalb des Manuskripts, über die Patient/-innen zu identifizieren sind, liegt von ihnen und/oder ihren gesetzlichen Vertretern/Vertreterinnen eine schriftliche Einwilligung vor.

Additional information

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fritz, K., Salavastru, C. & Tiplica, GS. Mikro- versus makrofokussierter Ultraschall zum Bodycontouring. Dermatologie 74, 753–758 (2023). https://doi.org/10.1007/s00105-023-05199-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00105-023-05199-2

Schlüsselwörter

Keywords

Navigation