Skip to main content
Log in

Tumormikromilieu des Melanoms – Einfluss moderner Therapien

Melanoma microenvironment—impact of modern therapies

  • Leitthema
  • Published:
Die Dermatologie Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Trotz beachtlicher Erfolge moderner Melanomtherapien beim fortgeschrittenen Melanom verstirbt ein beachtlicher Anteil der Patienten an seinem metastasierten Leiden.

Ziel der Arbeit

Der Beitrag gibt einen Überblick über die Rolle des Tumormikromilieus des Melanoms unter besonderer Berücksichtigung zugelassener Systemtherapien und neuer Therapieansätze.

Methoden

Es erfolgen die Sichtung und Diskussion aktueller klinischer Forschung und Grundlagenforschung zum Einfluss des Mikromilieus auf Progression und Therapieregime beim fortgeschrittenen Melanom.

Ergebnisse

Das Tumormikromilieu mit seiner Vielzahl an Komponenten und Interaktionen ist ein wesentlicher Einflussfaktor auf die Therapie fortgeschrittener Melanome.

Diskussion

Innovative Ansätze, die auf immunsuppressive Komponenten des Tumormikromilieus abzielen, könnten in Kombination mit bereits etablierten Therapien zu einer weiteren Verbesserung des Therapieansprechens fortgeschrittener Melanome führen.

Abstract

Background

A considerable proportion of patients with advanced melanoma succumb to metastatic disease despite the initial success of modern therapies.

Objectives

An overview of the melanoma tumor microenvironment with special focus on approved therapies and new innovative strategies is given.

Methods

Current clinical trials and scientific insights concerning the impact of the tumor microenvironment on progression and therapy of advanced melanoma are reviewed and discussed.

Results

The tumor microenvironment with its manifold components and interactions plays a major role in the treatment of malignant melanoma.

Conclusion

Innovative new strategies that target an immunosuppressive microenvironment may improve the therapeutic efficacy of current treatment of advanced melanoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Bald T et al (2014) Ultraviolet-radiation-induced inflammation promotes angiotropism and metastasis in melanoma. Nature 507(7490):109–113

    Article  CAS  PubMed  Google Scholar 

  2. Chesney JA, Ribas A et al (2022) Randomized, double-blind, placebo-controlled, global phase III trial of talimogene laherparepvec combined with pembrolizumab for advanced melanoma. J Clin Oncol. https://doi.org/10.1200/JCO.22.00343

    Article  Google Scholar 

  3. Diab A, Tykodi SS et al (2021) Bempegaldesleukin plus nivolumab in first-line metastatic melanoma. J Clin Oncol 39(26):2914–2925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fröhlich A, Sirokay J et al (2020) Molecular, clinicopathological, and immune correlates of LAG3 promoter DNA methylation in melanoma. eBioMedicine 59:102962

    Article  PubMed  PubMed Central  Google Scholar 

  5. Griess J et al (2019) B cells sustain inflammation and predict response to immune checkpoint blockade in human melanoma. Nat Commun 10:4186

    Article  Google Scholar 

  6. Gordon SR, Maute RL et al (2017) PD‑1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature 545:495–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hoek KS, Eichhoff OM et al (2008) In vivo switching of human melanoma cells between proliferative and invasive states. Cancer Res 68(3):650–656

    Article  CAS  PubMed  Google Scholar 

  8. Indini A, Massi D et al (2022) Targeting inflamed and non-inflamed melanomas: biological background and clinical challenges. Semin Cancer Biol. https://doi.org/10.1016/j.semcancer.2022.06.005

    Article  PubMed  Google Scholar 

  9. Korniluk A, Koper O et al (2017) From inflammation to cancer. Ir J Med Sci 186(1):57–62

    Article  CAS  PubMed  Google Scholar 

  10. Kuske M, Haist M et al (2022) Immunomodulatory properties of immune checkpoint inhibitors—more than boosting T‑cell responses? Cancers 14:1710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lambert AW, Pattabiraman DR, Weinberg RA (2017) Emerging biological principles of metastasis. Cell 168(4):670–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Landsberg J, Kohlmeyer J et al (2012) Melanomas resist T‑cell therapy through inflammation-induced reversible dedifferentiation. Nature 490(7420):412–416

    Article  CAS  PubMed  Google Scholar 

  13. Lau PKH, Feran B, Smith L et al (2021) Melanoma brain metastases that progress on BRAF-MEK inhibitors demonstrate resistance to ipilimumab-nivolumab that is associated with the Innate PD‑1 Resistance Signature (IPRES). J Immunother Cancer 9:e2995

    Article  PubMed  PubMed Central  Google Scholar 

  14. Li H, Xiao Y et al (2022) The allergy mediator histamine confers resistance to immunotherapy in cancer patients via activation of the macrophage histamine receptor H1. Cancer Cell 40(1):36–52.e9

    Article  CAS  PubMed  Google Scholar 

  15. Long G, Dummer R (2019) Epacadostat plus pembrolizumab versus placebo plus pembrolizumab in patients with unresectable or metastatic melanoma (ECHO-301/KEYNOTE-252): a phase 3, randomised, double-blind study. Lancet Oncol 20(8):P1083–P1097

    Article  Google Scholar 

  16. Lynch KT et al (2021) Heterogeneity in tertiary lymphoid structure B‑cells correlates with patient survival in metastatic melanoma. J Immunother Cancer 9:e2273

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mengoni M et al (2020) The aryl hydrocarbon receptor promotes inflammation-induced dedifferentiation and systemic metastatic spread of melanoma cells. Int J Cancer 147(10):2902–2913

    Article  CAS  PubMed  Google Scholar 

  18. Munn et al (2004) Expression of indoleamine 2,3-dioxygenase by plasmacytoid dendritic cells in tumor-draining lymph nodes. J Clin Invest 114:280–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pach E, Kümper M et al (2021) Extracellular matrix remodeling by fibroblast-MMP14 regulates melanoma growth. Int J Mol Sci 22(22):12276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Paget S (1889) The distribution of secondary growths in cancer of the breast. Lancet 1:571–573

    Article  Google Scholar 

  21. Peinado H, Zhang H et al (2017) Pre-metastatic niches: organ-specific homes for metastases. Nat Rev Cancer 17(5):302–317

    Article  CAS  PubMed  Google Scholar 

  22. Prendergast GC, Jaffee EM (2007) Cancer immunologists and cancer biologists: why we didn’t talk then but need to now. Cancer Res 67(8):3500–3504

    Article  CAS  PubMed  Google Scholar 

  23. Proietti I, Skroza N et al (2020) BRAF inhibitors: molecular targeting and Immuno-modulatory actions. Cancers 12:1823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sullivan RJ (2022) Role of triple therapy in melanoma. Clin Adv Hematol Oncol 20:6

    Google Scholar 

  25. Sun N, Tian Y et al (2022) Metabolic rewiring directs melanoma immunology. Front Immunol 13:909580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tartey S, Neale G et al (2021) A MyD88/IL1R axis regulates PD‑1 expression on tumor-associated macrophages and sustains their immunosuppressive function in melanoma. Cancer Res 81(9):2358–2372

    Article  CAS  PubMed  Google Scholar 

  27. Taylor MH, Lee CH et al (2020) Phase IB/II trial of lenvatinib plus pembrolizumab in patients with advanced renal cell carcinoma, endometrial cancer, and other selected advanced solid tumors. J Clin Oncol 38(11):1154–1163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Teijeira A et al (2020) CXCR1 and CXCR2 chemokine receptor agonists produced by tumors induce neutrophil extracellular traps that interfere with immune cytotoxicity. Immunity 52:856–871

    Article  CAS  PubMed  Google Scholar 

  29. Tawbi HA, Schadendorf D et al (2022) RELATIVITY-047 investigators. Relatlimab and nivolumab versus nivolumab in untreated advanced melanoma. N Engl J Med 386(1):24–34

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith Sirokay.

Ethics declarations

Interessenkonflikt

J. Sirokay hat Honorare für Vorträge, Beratertätigkeiten und Reiseunterstützung durch die Firmen Roche, MSD, BMS, Novartis und Pierre Fabre erhalten. Weiterhin bestand Förderung von Forschungsprojekten durch die Deutsche Dermatologische Gesellschaft und den Galderma Förderkreis e. V. C. Mauch hat Honorare und Reisekosten durch die Firmen Roche, MSD, BMS, Novartis und Pierre Fabre erhalten.

Für diesen Beitrag wurden von den Autorinnen keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sirokay, J., Mauch, C. Tumormikromilieu des Melanoms – Einfluss moderner Therapien. Dermatologie 73, 907–914 (2022). https://doi.org/10.1007/s00105-022-05078-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00105-022-05078-2

Schlüsselwörter

Keywords

Navigation