Skip to main content
Log in

Makrophagen im Melanom – von molekularen Signalen zur therapeutischen Anwendung

Melanoma-associated macrophages—from molecular signals to therapeutic application

  • Leitthema
  • Published:
Die Dermatologie Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Makrophagen sind ein wichtiger Bestandteil des angeborenen Immunsystems. Sie werden mit Mφ, MΦ oder MP abgekürzt. Die Bezeichnung stammt aus dem Griechischen: große Fresser, von griechisch μακρóς (makrós) = groß, φαγεῖν (phagein) = essen, weil sie Krankheitserreger verschlingen und verdauen. Tumorassoziierte Makrophagen (TAM) werden mit Arzneimittelresistenz bei Krebserkrankungen einschließlich Melanom in Verbindung gebracht, und ihre gezielte Bekämpfung könnte die Tumortherapie verbessern.

Zielsetzungen

In diesem Beitrag soll die Rolle von TAM bei Krebserkrankungen und insbesondere beim Melanom untersucht werden. Der Zusammenhang zwischen TAM und Therapieresistenz sowie ihre potenzielle Anwendung bei der Behandlung von Melanomen wird erörtert.

Materialien und Methoden

Es wurde eine Literaturrecherche in den Datenbanken PubMed und Google Scholar zu TAM und Melanom durchgeführt. Klinische Studien wurden über clinicaltrials.gov recherchiert und die grafischen Darstellungen mittels BioRender (BioRender, Toronto, Canada) erstellt.

Ergebnisse

Beim Melanom gehören Makrophagen zu den häufigsten Immunzellen in der Mikroumgebung des Tumors (TME). TAM werden mit einer schlechten Prognose und Resistenz in Verbindung gebracht. Sie sind an der Entstehung von Tumoren und der Entwicklung von Metastasen beteiligt. M2 ist der vorherrschende Typ von TAM, und die M2-Marker CD163 und CD204 sind ungünstige prognostische Biomarker. Therapeutische Ansätze zielen darauf ab, ihre Rekrutierung zu verringern, ihre Funktion zu modulieren oder sie umzuprogrammieren. Therapien mit chimären Antigenrezeptor(CAR)-M-Zellen und Nanopartikeln werden derzeit untersucht. Zu den Medikamenten, die für das Melanom getestet werden, gehören Inhibitoren des „signal transducer and activator of transcription 3“ (STAT3), Antagonisten des Makrophagen-Kolonie-stimulierenden Faktors (M-CSF), Interferone (IFN), Talimogene laherparepvec (TVEC), Histon-Deacetylase(HDAC)-Inhibitoren, Indolamin‑2,3‑Dioxygenase(IDO)-Inhibitoren, Kolonie-stimulierender Faktor-1-Rezeptor(CSF-1R)-Antagonisten, CD40-Agonisten, Arginase 1(ARG-1)-Inhibitoren und Phosphoinositid-3-Kinase γ(PI3K-γ)-Inhibitoren.

Schlussfolgerungen

TAM sind an der Resistenz gegen aktuelle Melanomtherapien beteiligt. Eine gegen sie gerichtete Therapie könnte zur Verringerung der Resistenzentwicklung und zur Verbesserung der Überlebensrate beitragen.

Abstract

Background

Macrophages are an important component of the innate immune system. They are abbreviated as Mφ, MΦ, or MP. The name is derived from Greek: large eaters, μακρóς (makrós) = large, φαγεῖν (phagein) = to eat, because they engulf and digest pathogens. Tumor-associated macrophages (TAMs) are associated with drug resistance in cancers, including melanoma, and targeting them may improve cancer treatment.

Objectives

The purpose of this article is to examine the role of TAMs in cancer, particularly in melanoma. The relationship between TAM and treatment resistance and their potential application in the treatment of melanoma are discussed.

Materials and methods

A literature search in PubMed and Google Scholar databases for TAM and melanoma was performed. Clinical trials were searched via clinicaltrials.gov and graphical representations were created using BioRender.

Results

In melanoma, macrophages are among the most abundant immune cells in the tumor microenvironment (TME). TAMs are associated with poor prognosis and resistance. They are involved in tumorigenesis and metastasis development. M2 is the predominant type of TAM and the M2 markers CD163 and CD204 are unfavorable prognostic biomarkers. Therapeutic approaches aim to decrease their recruitment, modulate their function, or reprogram them. Treatment using chimeric antigen receptor (CAR)-M cells and nanoparticles are currently being investigated. Drugs being tested for melanoma include signal transducer and activator of transcription 3 (STAT3) inhibitors, macrophage colony-stimulating factor (M-CSF) antagonists, interferons (IFN), talimogene laherparepvec (TVEC), histone deacetylase (HDAC) inhibitors, indoleamine 2,3-dioxygenase (IDO) inhibitors, colony-stimulating factor 1 receptor (CSF-1R) antagonists, CD40 agonists, arginase 1 (ARG-1) inhibitors, and phosphoinositide 3‑kinase γ (PI3K-γ) inhibitors.

Conclusions

TAMs participate in developing resistance to current melanoma therapies. Treatment directed against them may help reduce the development of resistance and improve survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Arlauckas SP, Garris CS, Kohler RH et al (2017) In vivo imaging reveals a tumor-associated macrophage-mediated resistance pathway in anti-PD‑1 therapy. Sci Transl Med 9:eaal3604

    PubMed  PubMed Central  Google Scholar 

  2. Bohn T, Rapp S, Luther N et al (2018) Tumor immunoevasion via acidosis-dependent induction of regulatory tumor-associated macrophages. Nat Immunol 19:1319–1329

    CAS  PubMed  Google Scholar 

  3. Calvo A, Joensuu H, Sebastian M et al (2018) Phase Ib/II study of lacnotuzumab (MCS110) combined with spartalizumab (PDR001) in patients (pts) with advanced tumors. J Clin Oncol 36:3014–3014

    Google Scholar 

  4. Cauchon NS, Oghamian S, Hassanpour S et al (2019) Innovation in chemistry, manufacturing, and controls—a regulatory perspective from industry. J Pharm Sci 108:2207–2237

    CAS  PubMed  Google Scholar 

  5. Chen Y, Song Y, Du W et al (2019) Tumor-associated macrophages: an accomplice in solid tumor progression. J Biomed Sci 26:78

    PubMed  PubMed Central  Google Scholar 

  6. Coit DG, Thompson JA, Albertini MR et al (2019) Cutaneous melanoma, version 2.2019, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw 17:367–402

    CAS  PubMed  Google Scholar 

  7. Dehne N, Mora J, Namgaladze D et al (2017) Cancer cell and macrophage cross-talk in the tumor microenvironment. Curr Opin Pharmacol 35:12–19

    CAS  PubMed  Google Scholar 

  8. Dhillon S (2022) Tebentafusp: first approval. Drugs 82:703–710

    CAS  PubMed  Google Scholar 

  9. Eisengart CA, Mestre JR, Naama HA et al (2000) Prostaglandins regulate melanoma-induced cytokine production in macrophages. Cell Immunol 204:143–149

    CAS  PubMed  Google Scholar 

  10. Falleni M, Savi F, Tosi D et al (2017) M1 and M2 macrophages’ clinicopathological significance in cutaneous melanoma. Melanoma Res 27:200–210

    CAS  PubMed  Google Scholar 

  11. Fujimura T, Sato Y, Tanita K et al (2018) Serum levels of soluble CD163 and CXCL5 may be predictive markers for immune-related adverse events in patients with advanced melanoma treated with nivolumab: a pilot study. Oncotarget 9:15542–15551

    PubMed  PubMed Central  Google Scholar 

  12. Grzywa TM, Sosnowska A, Matryba P et al (2020) Myeloid cell-derived arginase in cancer immune response. Front Immunol. https://doi.org/10.3389/fimmu.2020.00938

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hassel JC, Benlahrech A, Stanhope S et al (2021) Abstract 1673: Uveal melanoma study patients with low CD163:CD3 ratio in tumor biopsy and low serum IL‑6 showed enhanced tumor shrinkage (TS) and overall survival (OS) on tebentafusp. Cancer Res 81:1673–1673

    Google Scholar 

  14. He Z, Zhang S (2021) Tumor-associated macrophages and their functional transformation in the hypoxic tumor microenvironment. Front Immunol 12:741305

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Hu G, Guo M, Xu J et al (2019) Nanoparticles targeting macrophages as potential clinical therapeutic agents against cancer and inflammation. Front Immunol 10:1998

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Huber R, Meier B, Otsuka A et al (2016) Tumour hypoxia promotes melanoma growth and metastasis via High Mobility Group Box‑1 and M2-like macrophages. Sci Rep 6:29914

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Kaler C, Dollar J, Cruz A et al (2022) BAP1 loss promotes suppressive tumor immune microenvironment via upregulation of PROS1 in class 2 uveal melanomas. Cancers 14:3678

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kim TW, Kim Y, Keum H et al (2022) Combination of a STAT3 inhibitor with anti-PD‑1 immunotherapy is an effective treatment regimen for a vemurafenib-resistant melanoma. Mol Ther Oncol 26:1–14

    CAS  Google Scholar 

  19. Kim YJ, Won CH, Lee MW et al (2020) Correlation between tumor-associated macrophage and immune checkpoint molecule expression and its prognostic significance in cutaneous melanoma. J Clin Med 9:2500

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Klichinsky M, Ruella M, Shestova O et al (2020) Human chimeric antigen receptor macrophages for cancer immunotherapy. Nat Biotechnol 38:947–953

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Koo J, Hayashi M, Verneris MR et al (2020) Targeting tumor-associated macrophages in the pediatric sarcoma tumor microenvironment. Front Oncol. https://doi.org/10.3389/fonc.2020.581107

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kuklinski LF, Yan S, Li Z et al (2018) VISTA expression on tumor-infiltrating inflammatory cells in primary cutaneous melanoma correlates with poor disease-specific survival. Cancer Immunol Immunother 67:1113–1121

    CAS  PubMed  Google Scholar 

  23. Kumari N, Choi SH (2022) Tumor-associated macrophages in cancer: recent advancements in cancer nanoimmunotherapies. J Exp Clin Cancer Res 41:68

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Massi D, Marconi C, Franchi A et al (2007) Arginine metabolism in tumor-associated macrophages in cutaneous malignant melanoma: evidence from human and experimental tumors. Hum Pathol 38:1516–1525

    CAS  PubMed  Google Scholar 

  25. Milhem M, Zakharia Y, Davar D et al (2020) 304 Intratumoral injection of CMP-001, a toll-like receptor 9 (TLR9) agonist, in combination with pembrolizumab reversed programmed death receptor 1 (PD-1) blockade resistance in advanced melanoma. J Immunother Cancer 8:A186–A187

    Google Scholar 

  26. Neubert NJ, Schmittnaegel M, Bordry N et al (2018) T cell-induced CSF1 promotes melanoma resistance to PD1 blockade. Sci Transl Med 10:eaan3311

    PubMed  PubMed Central  Google Scholar 

  27. Noy R, Pollard JW (2014) Tumor-associated macrophages: from mechanisms to therapy. Immunity 41:49–61

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Palamaris K, Moutafi M, Gakiopoulou H et al (2022) Histone deacetylase (HDAC) inhibitors: a promising weapon to tackle therapy resistance in melanoma. IJMS 23:3660

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Pathria P, Louis TL, Varner JA (2019) Targeting tumor-associated macrophages in cancer. Trends Immunol 40:310–327

    CAS  PubMed  Google Scholar 

  30. Piaggio F, Kondylis V, Pastorino F et al (2016) A novel liposomal Clodronate depletes tumor-associated macrophages in primary and metastatic melanoma: Anti-angiogenic and anti-tumor effects. J Control Release 223:165–177

    CAS  PubMed  Google Scholar 

  31. Ralli M, Botticelli A, Visconti IC et al (2020) Immunotherapy in the treatment of metastatic melanoma: current knowledge and future directions. J Immunol Res 2020:9235638

    PubMed  PubMed Central  Google Scholar 

  32. Ramesh A, Kumar S, Nandi D et al (2019) CSF1R- and SHP2-inhibitor-loaded nanoparticles enhance cytotoxic activity and phagocytosis in tumor-associated macrophages. Adv Mater 31:e1904364

    PubMed  Google Scholar 

  33. Rhee I (2016) Diverse macrophages polarization in tumor microenvironment. Arch Pharm Res 39:1588–1596

    CAS  PubMed  Google Scholar 

  34. Riabov V, Gudima A, Wang N et al (2014) Role of tumor associated macrophages in tumor angiogenesis and lymphangiogenesis. Front Physiol 5:75

    PubMed  PubMed Central  Google Scholar 

  35. Rogers TL, Holen I (2011) Tumour macrophages as potential targets of bisphosphonates. J Transl Med 9:177

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Scala S, Ottaiano A, Ascierto PA et al (2005) Expression of CXCR4 predicts poor prognosis in patients with malignant melanoma. Clin Cancer Res 11:1835–1841

    CAS  PubMed  Google Scholar 

  37. Singh M, Vianden C, Cantwell MJ et al (2017) Intratumoral CD40 activation and checkpoint blockade induces T cell-mediated eradication of melanoma in the brain. Nat Commun 8:1447

    PubMed  PubMed Central  Google Scholar 

  38. Singh S, Roszik J, Saini N et al (2022) B cells are required to generate optimal anti-melanoma immunity in response to checkpoint blockade. Front Immunol 13:794684

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Sockolosky JT, Dougan M, Ingram JR et al (2016) Durable antitumor responses to CD47 blockade require adaptive immune stimulation. Proc Natl Acad Sci U S A 113:E2646–E2654

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Tamura R, Tanaka T, Yamamoto Y et al (2018) Dual role of macrophage in tumor immunity. Immunotherapy 10:899–909

    CAS  PubMed  Google Scholar 

  41. Wang H, Yung MMH, Ngan HYS et al (2021) The impact of the tumor microenvironment on macrophage polarization in cancer metastatic progression. Int J Mol Sci 22:6560

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang T, Xiao M, Ge Y et al (2015) BRAF inhibition stimulates melanoma-associated macrophages to drive tumor growth. Clin Cancer Res 21:1652–1664

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Wyckoff J, Wang W, Lin EY et al (2004) A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Res 64:7022–7029

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Eigentler.

Ethics declarations

Interessenkonflikt

E. Chatziioannou, S.A. Aydin, S. Forchhammer, T. Sinnberg und T. Eigentler geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autor/-innen keine Studien an Menschen oder Tieren durchgeführt. Die Arbeit wurde unter Berücksichtigung der guten wissenschaftlichen Praxis erstellt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Die Autoren Eftychia Chatziioannou und Serra Atilla Aydin haben zu gleichen Teilen zum Manuskript beigetragen.

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatziioannou, E., Aydin, S.A., Forchhammer, S. et al. Makrophagen im Melanom – von molekularen Signalen zur therapeutischen Anwendung. Dermatologie 73, 915–928 (2022). https://doi.org/10.1007/s00105-022-05077-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00105-022-05077-3

Schlüsselwörter

Keywords

Navigation