Skip to main content
Log in

Tumorinfiltrierende T-Zellen und natürliche Killerzellen im Melanom

Tumor-infiltrating natural killer and T cells in melanoma

  • Leitthema
  • Published:
Die Dermatologie Aims and scope Submit manuscript

Zusammenfassung

Das Melanom ist ein stark immunogener Tumor mit einer erhöhten Dichte an tumorinfiltrierenden Lymphozyten (TIL). TIL sind eine sehr heterogene Zellpopulation, die unter anderem aus CD8+-T-Lymphozyten, CD4+-T-Lymphozyten, regulatorischen T‑Zellen, B‑Zellen und natürlichen Killerzellen (NK-Zellen) besteht und sich zwischen einzelnen Melanompatienten deutlich unterscheiden kann. Verteilung, Dichte, Profil sowie der Aktivierungsstatus der melanominfiltrierenden Zellen können stark variieren und die Prognose beeinflussen. Verschiedene Unterpopulationen der CD8+-T-Zellen, CD4+-T-Zellen und NK-Zellen konnten identifiziert und mit dem Verlauf der Erkrankung sowie dem Ansprechen auf verschiedene Therapien assoziiert werden. Ein besseres Verständnis der Funktionen, des Zusammenwirkens und der Aktivierung der unterschiedlichen Populationen sowie das gezielte Beeinflussen einzelner Untergruppen könnte zu vielversprechenden neuen innovativen Therapieansätzen führen.

Abstract

Melanoma is a highly immunogenic cancer with an increased infiltration of lymphocytes (TIL). TIL are a very heterogeneous population which consists among others of CD8+ T cells, CD4+ T cells, regulatory T cells, B cells, and natural killer (NK) cells and may differ highly between melanoma patients. Distribution, concentration, phenotype, and activation status of the infiltrating lymphocytes vary greatly and impact the prognosis. Different subpopulations of CD8+ T cells, CD4+ T cells, and NK cells have been identified and have been associated with both the course of the disease and the therapeutic response to different therapies. Increased knowledge of the different functions, interactions, activation, and possibilities of actively influencing relevant subgroups may lead to novel, innovative, and promising therapeutic options.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Clark WH Jr., From L, Bernardino EA et al (1969) The histogenesis and biologic behavior of primary human malignant melanomas of the skin. Cancer Res 29:705–727

    PubMed  Google Scholar 

  2. van der Bruggen P, Traversari C, Chomez P et al (1991) A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 254:1643–1647. https://doi.org/10.1126/science.1840703

    Article  PubMed  Google Scholar 

  3. Vinay DS, Ryan EP, Pawelec G et al (2015) Immune evasion in cancer: mechanistic basis and therapeutic strategies. Semin Cancer Biol 35:S185–S198. https://doi.org/10.1016/j.semcancer.2015.03.004

    Article  CAS  PubMed  Google Scholar 

  4. Morrison SL, Han G, Elenwa F et al (2022) Is the presence of tumor-infiltrating lymphocytes predictive of outcomes in patients with melanoma? Cancer 128:1418–1428. https://doi.org/10.1002/cncr.34013

    Article  CAS  PubMed  Google Scholar 

  5. Kluger HM, Zito CR, Barr ML et al (2015) Characterization of PD-L1 expression and associated T‑cell infiltrates in metastatic melanoma samples from variable anatomic sites. Clin Cancer Res 21:3052–3060. https://doi.org/10.1158/1078-0432.CCR-14-3073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Madore J, Vilain RE, Menzies AM et al (2015) PD-L1 expression in melanoma shows marked heterogeneity within and between patients: implications for anti-PD-1/PD-L1 clinical trials. Pigment Cell Melanoma Res 28:245–253. https://doi.org/10.1111/pcmr.12340

    Article  CAS  PubMed  Google Scholar 

  7. Eriksson H, Frohm-Nilsson M, Jaras J et al (2015) Prognostic factors in localized invasive primary cutaneous malignant melanoma: results of a large population-based study. Br J Dermatol 172:175–186. https://doi.org/10.1111/bjd.13171

    Article  CAS  PubMed  Google Scholar 

  8. Mantovani A, Allavena P, Sica A et al (2008) Cancer-related inflammation. Nature 454:436–444. https://doi.org/10.1038/nature07205

    Article  CAS  PubMed  Google Scholar 

  9. Inozume T, Yaguchi T, Furuta J et al (2016) Melanoma cells control antimelanoma CTL responses via interaction between TIGIT and CD155 in the effector phase. J Invest Dermatol 136:255–263. https://doi.org/10.1038/JID.2015.404

    Article  CAS  PubMed  Google Scholar 

  10. Piras F, Colombari R, Minerba L et al (2005) The predictive value of CD8, CD4, CD68, and human leukocyte antigen-D-related cells in the prognosis of cutaneous malignant melanoma with vertical growth phase. Cancer 104:1246–1254. https://doi.org/10.1002/cncr.21283

    Article  CAS  PubMed  Google Scholar 

  11. Maibach F, Sadozai H, Seyed Jafari SM et al (2020) Tumor-infiltrating lymphocytes and their prognostic value in cutaneous melanoma. Front Immunol 11:2105. https://doi.org/10.3389/fimmu.2020.02105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jensen TO, Schmidt H, Moller HJ et al (2012) Intratumoral neutrophils and plasmacytoid dendritic cells indicate poor prognosis and are associated with pSTAT3 expression in AJCC stage I/II melanoma. Cancer 118:2476–2485. https://doi.org/10.1002/cncr.26511

    Article  CAS  PubMed  Google Scholar 

  13. Ayers M, Lunceford J, Nebozhyn M et al (2017) IFN-gamma-related mRNA profile predicts clinical response to PD‑1 blockade. J Clin Invest 127:2930–2940. https://doi.org/10.1172/JCI91190

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sade-Feldman M, Yizhak K, Bjorgaard SL et al (2018) Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell 175:998–1013.e20. https://doi.org/10.1016/j.cell.2018.10.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kallies A, Zehn D, Utzschneider DT (2020) Precursor exhausted T cells: key to successful immunotherapy? Nat Rev Immunol 20:128–136. https://doi.org/10.1038/s41577-019-0223-7

    Article  CAS  PubMed  Google Scholar 

  16. Scott AC, Dundar F, Zumbo P et al (2019) TOX is a critical regulator of tumour-specific T cell differentiation. Nature 571:270–274. https://doi.org/10.1038/s41586-019-1324-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Krishna S, Lowery FJ, Copeland AR et al (2020) Stem-like CD8 T cells mediate response of adoptive cell immunotherapy against human cancer. Science 370:1328–1334. https://doi.org/10.1126/science.abb9847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jameson SC, Masopust D (2018) Understanding subset diversity in T cell memory. Immunity 48:214–226. https://doi.org/10.1016/j.immuni.2018.02.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Beumer-Chuwonpad A, Taggenbrock R, Ngo TA et al (2021) The potential of tissue-resident memory T cells for adoptive immunotherapy against. Cancer Cells. https://doi.org/10.3390/cells10092234

    Article  Google Scholar 

  20. Boddupalli CS, Bar N, Kadaveru K et al (2016) Interlesional diversity of T cell receptors in melanoma with immune checkpoints enriched in tissue-resident memory T cells. JCI Insight 1:e88955. https://doi.org/10.1172/jci.insight.88955

    Article  PubMed  PubMed Central  Google Scholar 

  21. Smazynski J, Webb JR (2018) Resident memory-like tumor-infiltrating lymphocytes (TILRM): latest players in the immuno-oncology repertoire. Front Immunol 9:1741. https://doi.org/10.3389/fimmu.2018.01741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Han J, Zhao Y, Shirai K et al (2021) Resident and circulating memory T cells persist for years in melanoma patients with durable responses to immunotherapy. Nat Cancer 2:300–311. https://doi.org/10.1038/s43018-021-00180-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Oliveira G, Stromhaug K, Klaeger S et al (2021) Phenotype, specificity and avidity of antitumour CD8(+) T cells in melanoma. Nature 596:119–125. https://doi.org/10.1038/s41586-021-03704-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gokuldass A, Draghi A, Papp K et al (2020) Qualitative analysis of tumor-infiltrating lymphocytes across human tumor types reveals a higher proportion of bystander CD8(+) T cells in non-melanoma cancers compared to melanoma. Cancers (Basel). https://doi.org/10.3390/cancers12113344

    Article  PubMed  Google Scholar 

  25. Tietze JK, Wilkins DE, Sckisel GD et al (2012) Delineation of antigen-specific and antigen-nonspecific CD8(+) memory T‑cell responses after cytokine-based cancer immunotherapy. Blood 119:3073–3083. https://doi.org/10.1182/blood-2011-07-369736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Svane IM, Verdegaal EM (2014) Achievements and challenges of adoptive T cell therapy with tumor-infiltrating or blood-derived lymphocytes for metastatic melanoma: what is needed to achieve standard of care? Cancer Immunol Immunother 63:1081–1091. https://doi.org/10.1007/s00262-014-1580-5

    Article  CAS  PubMed  Google Scholar 

  27. Hunder NN, Wallen H, Cao J et al (2008) Treatment of metastatic melanoma with autologous CD4+ T cells against NY-ESO‑1. N Engl J Med 358:2698–2703. https://doi.org/10.1056/NEJMoa0800251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kakavand H, Vilain RE, Wilmott JS et al (2015) Tumor PD-L1 expression, immune cell correlates and PD-1+ lymphocytes in sentinel lymph node melanoma metastases. Mod Pathol 28:1535–1544. https://doi.org/10.1038/modpathol.2015.110

    Article  CAS  PubMed  Google Scholar 

  29. Erdag G, Schaefer JT, Smolkin ME et al (2012) Immunotype and immunohistologic characteristics of tumor-infiltrating immune cells are associated with clinical outcome in metastatic melanoma. Cancer Res 72:1070–1080. https://doi.org/10.1158/0008-5472.CAN-11-3218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Taramelli D, Fossati G, Mazzocchi A et al (1986) Classes I and II HLA and melanoma-associated antigen expression and modulation on melanoma cells isolated from primary and metastatic lesions. Cancer Res 46:433–439

    CAS  PubMed  Google Scholar 

  31. Martins I, Sylla K, Deshayes F et al (2009) Coexpression of major histocompatibility complex class II with chemokines and nuclear NFkappaB p50 in melanoma: a rational for their association with poor prognosis. Melanoma Res 19:226–237. https://doi.org/10.1097/CMR.0b013e32832e0bc3

    Article  CAS  PubMed  Google Scholar 

  32. Chen YY, Chang WA, Lin ES et al (2019) Expressions of HLA class II genes in cutaneous melanoma were associated with clinical outcome: bioinformatics approaches and systematic analysis of public microarray and RNA-seq datasets. Diagnostics (Basel). https://doi.org/10.3390/diagnostics9020059

    Article  PubMed  PubMed Central  Google Scholar 

  33. Johnson DB, Estrada MV, Salgado R et al (2016) Melanoma-specific MHC-II expression represents a tumour-autonomous phenotype and predicts response to anti-PD-1/PD-L1 therapy. Nat Commun 7:10582. https://doi.org/10.1038/ncomms10582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kim HJ, Cantor H (2014) CD4 T‑cell subsets and tumor immunity: the helpful and the not-so-helpful. Cancer Immunol Res 2:91–98. https://doi.org/10.1158/2326-6066.CIR-13-0216

    Article  CAS  PubMed  Google Scholar 

  35. Purwar R, Schlapbach C, Xiao S et al (2012) Robust tumor immunity to melanoma mediated by interleukin-9-producing T cells. Nat Med 18:1248–1253. https://doi.org/10.1038/nm.2856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Togashi Y, Shitara K, Nishikawa H (2019) Regulatory T cells in cancer immunosuppression—implications for anticancer therapy. Nat Rev Clin Oncol 16:356–371. https://doi.org/10.1038/s41571-019-0175-7

    Article  CAS  PubMed  Google Scholar 

  37. Fu Q, Chen N, Ge C et al (2019) Prognostic value of tumor-infiltrating lymphocytes in melanoma: a systematic review and meta-analysis. OncoImmunology 8:1593806. https://doi.org/10.1080/2162402X.2019.1593806

    Article  PubMed  PubMed Central  Google Scholar 

  38. Huang L, Guo Y, Liu S et al (2021) Targeting regulatory T cells for immunotherapy in melanoma. Mol Biomed 2:11. https://doi.org/10.1186/s43556-021-00038-z

    Article  PubMed  PubMed Central  Google Scholar 

  39. Tietze JK, Angelova D, Heppt MV et al (2017) Low baseline levels of NK cells may predict a positive response to ipilimumab in melanoma therapy. Exp Dermatol 26:622–629. https://doi.org/10.1111/exd.13263

    Article  CAS  PubMed  Google Scholar 

  40. Long EO, Kim HS, Liu D et al (2013) Controlling natural killer cell responses: integration of signals for activation and inhibition. Annu Rev Immunol 31:227–258. https://doi.org/10.1146/annurev-immunol-020711-075005

    Article  CAS  PubMed  Google Scholar 

  41. Huntington ND, Cursons J, Rautela J (2020) The cancer-natural killer cell immunity cycle. Nat Rev Cancer 20:437–454. https://doi.org/10.1038/s41568-020-0272-z

    Article  CAS  PubMed  Google Scholar 

  42. Cristiani CM, Garofalo C, Passacatini LC et al (2020) New avenues for melanoma immunotherapy: natural killer cells? Scand J Immunol 91:e12861. https://doi.org/10.1111/sji.12861

    Article  PubMed  Google Scholar 

  43. Cursons J, Souza-Fonseca-Guimaraes F, Foroutan M et al (2019) A gene signature predicting natural killer cell infiltration and improved survival in melanoma patients. Cancer Immunol Res 7:1162–1174. https://doi.org/10.1158/2326-6066.CIR-18-0500

    Article  CAS  PubMed  Google Scholar 

  44. Kuske M, Haist M, Jung T et al (2022) Immunomodulatory properties of immune checkpoint inhibitors-more than boosting T‑cell responses? Cancers (Basel). https://doi.org/10.3390/cancers14071710

    Article  PubMed  Google Scholar 

  45. Marin ND, Krasnick BA, Becker-Hapak M et al (2021) Memory-like differentiation enhances NK cell responses to melanoma. Clin Cancer Res 27:4859–4869. https://doi.org/10.1158/1078-0432.CCR-21-0851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wong PF, Wei W, Smithy JW et al (2019) Multiplex quantitative analysis of tumor-infiltrating lymphocytes and immunotherapy outcome in metastatic melanoma. Clin Cancer Res 25:2442–2449. https://doi.org/10.1158/1078-0432.CCR-18-2652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Spitzer MH, Carmi Y, Reticker-Flynn NE et al (2017) Systemic immunity is required for effective cancer immunotherapy. Cell 168:487–502.e15. https://doi.org/10.1016/j.cell.2016.12.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Borgers JSW, Haanen J (2021) Cellular therapy and cytokine treatments for melanoma. Hematol Oncol Clin North Am 35:129–144. https://doi.org/10.1016/j.hoc.2020.08.014

    Article  PubMed  Google Scholar 

  49. Edwards J, Wilmott JS, Madore J et al (2018) CD103(+) tumor-resident CD8(+) T cells are associated with improved survival in immunotherapy-naive melanoma patients and expand significantly during anti-PD‑1 treatment. Clin Cancer Res 24:3036–3045. https://doi.org/10.1158/1078-0432.CCR-17-2257

    Article  CAS  PubMed  Google Scholar 

  50. van Vliet AA, Georgoudaki AM, Raimo M et al (2021) Adoptive NK cell therapy: a promising treatment prospect for metastatic melanoma. Cancers (Basel). https://doi.org/10.3390/cancers13184722

    Article  PubMed  Google Scholar 

  51. Mihm MC Jr., Mule JJ (2015) Reflections on the histopathology of tumor-infiltrating lymphocytes in melanoma and the host immune response. Cancer Immunol Res 3:827–835. https://doi.org/10.1158/2326-6066.CIR-15-0143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia K. Tietze.

Ethics declarations

Interessenkonflikt

J.K. Tietze gibt an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von der Autorin keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tietze, J.K. Tumorinfiltrierende T-Zellen und natürliche Killerzellen im Melanom. Dermatologie 73, 929–936 (2022). https://doi.org/10.1007/s00105-022-05076-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00105-022-05076-4

Schlüsselwörter

Keywords

Navigation