Skip to main content

Hauterkrankungen durch humane Polyomaviren

Human polyomavirus-associated skin diseases

Zusammenfassung

Von den gegenwärtig bekannten 15 humanen Polyomaviren (HPyV) wurden 8 auf gesunder Haut gefunden. Merkelzell-Polyomavirus (MCPyV), HPyV6, HPyV7 sowie das seltener vorkommende Saint Louis-Polyomavirus (STLPyV) gelten als Teil des humanen kutanen Viroms. Das wichtigste kutane Polyomavirus, MCPyV, verursacht einen Großteil der Merkelzellkarzinome (MCC). Das MCC ist ein seltener, aber sehr aggressiver maligner Hauttumor, der neben immunsupprimierten auch immunkompetente Patienten betrifft. In den letzten Jahrzehnten wurde eine stetige Zunahme der Inzidenzraten dieses Hauttumors beobachtet. MCC treten v. a. auf Sonnenlicht-exponierten Hautarealen hellhäutiger Menschen auf. Risikofaktoren für die Entwicklung eines MCC sind Immunsuppression und hohes Alter. Die Primärinfektion mit dem Trichodysplasia-spinulosa-assoziierten Polyomavirus (TSPyV) kann bei Immunsupprimierten die sehr seltene Hauterkrankung Trichodysplasia spinulosa (TS) verursachen. Keratinstachel (Spicula), hauptsächlich im zentralen Gesicht, charakterisieren diese Erkrankung. Ausschließlich bei Immunsupprimierten wurden Hautläsionen in Zusammenhang mit weiteren HPyV beschrieben. Für HPyV6 und HPyV7 wurden Fälle epithelialer Proliferationen und juckender dyskeratotischer Dermatitiden veröffentlicht. HPyV9 und New Jersey-Polyomavirus (NJPyV-13) wurden jeweils in unterschiedlichen Hautveränderungen einzelner Patienten gefunden, wobei die Rolle dieser Polyomaviren bei der Entstehung der Hautläsionen noch unklar ist.

Abstract

Of the 15 currently known human polyomaviruses (HPyV), eight have been found on healthy skin. Merkel cell polyomavirus (MCPyV), HPyV6, HPyV7, and to a lesser extent Saint Louis polyomavirus (STLPyV) are considered part of the human cutaneous virome. The most important cutaneous polyomavirus, MCPyV, causes the majority of Merkel cell carcinomas (MCC). MCC is a rare but very aggressive malignant skin tumor that affects both immunocompetent and immunosuppressed patients. A steady increase in incidence rates of this skin tumor has been observed in recent decades. MCC occurs primarily on sunlight-exposed skin of fair-skinned individuals. Risk factors for MCC development include immunosuppression and advanced age. In immunocompromised individuals, primary infection with trichodysplasia spinulosa-associated polyomavirus (TSPyV) can cause the very rare skin disease trichodysplasia spinulosa (TS). Keratin spines (spicules), mainly in the center of the face, clinically characterize this disease. Skin lesions associated with further HPyV have been described exclusively in immunocompromised individuals. For HPyV6 and HPyV7, cases of epithelial proliferation and pruritic dyskeratotic dermatitis have been published. HPyV9 and New Jersey polyomavirus (NJPyV-13) were each found in different skin lesions of individual patients. The role of these polyomaviruses in the development of the skin lesions is still unclear.

This is a preview of subscription content, access via your institution.

Abb. 1

Literatur

  1. Ahmed MM, Cushman CH, Decaprio JA (2021) Merkel cell polyomavirus: oncogenesis in a stable genome. Viruses 14(1):58. https://doi.org/10.3390/v14010058

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Akaike T, Nghiem P (2022) Scientific and clinical developments in Merkel cell carcinoma: a polyomavirus-driven, often-lethal skin cancer. J Dermatol Sci 105:2–10

    CAS  PubMed  Article  Google Scholar 

  3. Allander T, Andreasson K, Gupta S et al (2007) Identification of a third human polyomavirus. J Virol 81:4130–4136

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. Becker JC, Eigentler T, Frerich B et al (2018) S2k-Leitlinie – Merkelzellkarzinom (MZK, MCC, neuroendokrines Karzinom der Haut). https://www.awmf.org/uploads/tx_szleitlinien/032-023l_S2k_Merkelzellkarzinom_2018-12-verlaengert_01.pdf. Zugegriffen: 25. Febr. 2022 (AWMF-Register Nr. 032/023)

  5. Becker JC, Schrama D, Houben R (2009) Merkel cell carcinoma. Cell Mol Life Sci 66:1–8

    CAS  PubMed  Article  Google Scholar 

  6. Becker JC, Stang A, Hausen AZ et al (2018) Epidemiology, biology and therapy of Merkel cell carcinoma: conclusions from the EU project IMMOMEC. Cancer Immunol Immunother 67:341–351

    CAS  PubMed  Article  Google Scholar 

  7. Beckervordersandforth J, Pujari S, Rennspiess D et al (2016) Frequent detection of human polyomavirus 6 in keratoacanthomas. Diagn Pathol 11:58

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  8. Bialasiewicz S, Byrom L, Fraser C et al (2017) Potential route of transmission for trichodysplasia spinulosa polyomavirus. J Infect Dis 215:1175–1176

    PubMed  PubMed Central  Article  Google Scholar 

  9. Bopp L, Wieland U, Hellmich M et al (2021) Natural history of cutaneous human polyomavirus infection in healthy individuals. Front Microbiol 12:740947

    PubMed  PubMed Central  Article  Google Scholar 

  10. Borgogna C, Albertini S, Zavattaro E et al (2019) Primary trichodysplasia spinulosa polyomavirus infection in a kidney transplant child displaying virus-infected decoy cells in the urine. J Med Virol 91:1896–1900

    PubMed  Article  Google Scholar 

  11. Buck CB, Phan GQ, Raiji MT et al (2012) Complete genome sequence of a tenth human polyomavirus. J Virol 86:10887

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. Canavan TN, Baddley JW, Pavlidakey P et al (2018) Human polyomavirus-7-associated eruption successfully treated with acitretin. Am J Transplant 18:1278–1284

    CAS  PubMed  Article  Google Scholar 

  13. Chen T, Mattila PS, Jartti T et al (2011) Seroepidemiology of the newly found trichodysplasia spinulosa-associated polyomavirus. J Infect Dis 204:1523–1526

    CAS  PubMed  Article  Google Scholar 

  14. Curman P, Näsman A, Brauner H (2021) Trichodysplasia spinulosa: a comprehensive review of the disease and its treatment. J Eur Acad Dermatol Venereol 35:1067–1076

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. Deluca IJ, Patel VA, Pereira MR et al (2015) A new polyomavirus-related dermatosis in a pancreatic transplant patient. JAAD Case Rep 1:S38–40

    PubMed  PubMed Central  Article  Google Scholar 

  16. Feng H, Shuda M, Chang Y et al (2008) Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science 319:1096–1100

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. Foulongne V, Kluger N, Dereure O et al (2010) Merkel cell polyomavirus in cutaneous swabs. Emerg Infect Dis 16:685–687

    PubMed  PubMed Central  Article  Google Scholar 

  18. Gambichler T, Wieland U, Silling S et al (2017) Left-sided laterality of Merkel cell carcinoma in a German population: more than just sun exposure. J Cancer Res Clin Oncol 143:347–350

    CAS  PubMed  Article  Google Scholar 

  19. Gardner SD, Field AM, Coleman DV et al (1971) New human papovavirus (B.K.) isolated from urine after renal transplantation. Lancet 1:1253–1257

    CAS  PubMed  Article  Google Scholar 

  20. Gaynor AM, Nissen MD, Whiley DM et al (2007) Identification of a novel polyomavirus from patients with acute respiratory tract infections. PLoS Pathog 3:e64

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  21. Gheit T, Dutta S, Oliver J et al (2017) Isolation and characterization of a novel putative human polyomavirus. Virology 506:45–54

    CAS  PubMed  Article  Google Scholar 

  22. Haeggblom L, Franzén J, Näsman A (2017) Human polyomavirus DNA detection in keratoacanthoma and Spitz naevus: no evidence for a causal role. J Clin Pathol 70:451–453

    CAS  PubMed  Article  Google Scholar 

  23. Hampras SS, Giuliano AR, Lin HY et al (2015) Natural history of polyomaviruses in men: the HPV infection in men (HIM) study. J Infect Dis 211:1437–1446

    CAS  PubMed  Article  Google Scholar 

  24. Hashida Y, Higuchi T, Matsuzaki S et al (2018) Prevalence and genetic variability of human polyomaviruses 6 and 7 in healthy skin among asymptomatic individuals. J Infect Dis 217:483–493

    PubMed  Article  Google Scholar 

  25. Hashida Y, Higuchi T, Nakajima K et al (2020) Human polyomavirus 6 with the Asian-Japanese genotype in cases of Kimura disease and angiolymphoid hyperplasia with eosinophilia. J Invest Dermatol 140:1650–1653.e4

    CAS  PubMed  Article  Google Scholar 

  26. Heath M, Jaimes N, Lemos B et al (2008) Clinical characteristics of Merkel cell carcinoma at diagnosis in 195 patients: the AEIOU features. J Am Acad Dermatol 58:375–381

    PubMed  PubMed Central  Article  Google Scholar 

  27. Ho J, Jedrych JJ, Feng H et al (2015) Human polyomavirus 7‑associated pruritic rash and viremia in transplant recipients. J Infect Dis 211:1560–1565

    PubMed  Article  Google Scholar 

  28. Izakovic J, Büchner SA, Düggelin M et al (1995) Hair-like hyperkeratoses in patients with kidney transplants. A new cyclosporin side-effect. Hautarzt 46:841–846

    CAS  PubMed  Article  Google Scholar 

  29. Jose A, Dad T, Strand A et al (2020) Trichodysplasia spinulosa: case reports and review of literature. Transpl Infect Dis 22:e13342

    PubMed  Article  Google Scholar 

  30. Kamminga S, van der Meijden E, Feltkamp MCW et al (2018) Seroprevalence of fourteen human polyomaviruses determined in blood donors. PLoS ONE 13:e206273

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  31. Kazem S, van der Meijden E, Feltkamp MC (2013) The trichodysplasia spinulosa-associated polyomavirus: virological background and clinical implications. Apmis 121:770–782

    CAS  PubMed  Article  Google Scholar 

  32. Kean JM, Rao S, Wang M et al (2009) Seroepidemiology of human polyomaviruses. PLoS Pathog 5:e1000363

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  33. Klufah F, Mobaraki G, Liu D et al (2021) Emerging role of human polyomaviruses 6 and 7 in human cancers. Infect Agents Cancer 16:35

    CAS  Article  Google Scholar 

  34. Korup S, Rietscher J, Calvignac-Spencer S et al (2013) Identification of a novel human polyomavirus in organs of the gastrointestinal tract. PLoS One 8:e58021

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. Lim ES, Reyes A, Antonio M et al (2013) Discovery of STL polyomavirus, a polyomavirus of ancestral recombinant origin that encodes a unique T antigen by alternative splicing. Virology 436:295–303

    CAS  PubMed  Article  Google Scholar 

  36. Matthews MR, Wang RC, Reddick RL et al (2011) Viral-associated trichodysplasia spinulosa: a case with electron microscopic and molecular detection of the trichodysplasia spinulosa-associated human polyomavirus. J Cutan Pathol 38:420–431

    PubMed  PubMed Central  Article  Google Scholar 

  37. McEvoy AM, Lachance K, Hippe DS et al (2022) Recurrence and mortality risk of Merkel cell carcinoma by cancer stage and time from diagnosis. JAMA Dermatol. https://doi.org/10.1001/jamadermatol.2021.6096

    Article  PubMed  Google Scholar 

  38. Mishra N, Ng J, Strom MA et al (2022) Human polyomavirus 9‑an emerging cutaneous and pulmonary pathogen in solid organ transplant recipients. JAMA Dermatol 158(3):293–298. https://doi.org/10.1001/jamadermatol.2021.5853

    Article  PubMed  Google Scholar 

  39. Mishra N, Pereira M, Rhodes RH et al (2014) Identification of a novel polyomavirus in a pancreatic transplant recipient with retinal blindness and vasculitic myopathy. J Infect Dis 210:1595–1599

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. Moens U, Krumbholz A, Ehlers B et al (2017) Biology, evolution, and medical importance of polyomaviruses: an update. Infect Genet Evol 54:18–38

    CAS  PubMed  Article  Google Scholar 

  41. Moens U, Prezioso C, Pietropaolo V (2020) Genetic diversity of the noncoding control region of the novel human polyomaviruses. Viruses 12(12):1406. https://doi.org/10.3390/v12121406

    CAS  Article  PubMed Central  Google Scholar 

  42. Nakamura T, Sato Y, Watanabe D et al (2010) Nuclear localization of Merkel cell polyomavirus large T antigen in Merkel cell carcinoma. Virology 398:273–279

    CAS  PubMed  Article  Google Scholar 

  43. Narayanan D, Rady PL, Tyring SK (2020) Recent developments in trichodysplasia spinulosa disease. Transpl Infect Dis 22:e13434

    PubMed  Article  Google Scholar 

  44. Nghiem P, Park SY (2019) Less toxic, more effective treatment—a win-win for patients with Merkel cell carcinoma. JAMA Dermatol 155:1223–1224

    PubMed  Article  Google Scholar 

  45. Nguyen KD, Chamseddin BH, Cockerell CJ et al (2019) The biology and clinical features of cutaneous polyomaviruses. J Invest Dermatol 139:285–292

    CAS  PubMed  Article  Google Scholar 

  46. Nguyen KD, Lee EE, Yue Y et al (2017) Human polyomavirus 6 and 7 are associated with pruritic and dyskeratotic dermatoses. J Am Acad Dermatol 76:932–940.e3

    CAS  PubMed  Article  Google Scholar 

  47. Olsen CM, Pandeya N, Whiteman DC (2021) International increases in Merkel cell carcinoma incidence rates between 1997 and 2016. J Invest Dermatol 141:2596–2601.e1

    CAS  PubMed  Article  Google Scholar 

  48. Ondov BD, Starrett GJ, Sappington A et al (2019) Mash screen: high-throughput sequence containment estimation for genome discovery. Genome Biol 20:232

    PubMed  PubMed Central  Article  Google Scholar 

  49. Padgett BL, Walker DL, Zurhein GM et al (1971) Cultivation of papova-like virus from human brain with progressive multifocal leucoencephalopathy. Lancet 1:1257–1260

    CAS  PubMed  Article  Google Scholar 

  50. Park SY, Doolittle-Amieva C, Moshiri Y et al (2021) How we treat Merkel cell carcinoma: within and beyond current guidelines. Future Oncol 17:1363–1377

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. Pastrana DV, Peretti A, Welch NL et al (2018) Metagenomic discovery of 83 new human papillomavirus types in patients with immunodeficiency. mSphere 3(6):e00645-18. https://doi.org/10.1128/mSphereDirect.00645-18

    Article  PubMed  PubMed Central  Google Scholar 

  52. Paulson KG, Park SY, Vandeven NA et al (2018) Merkel cell carcinoma: current US incidence and projected increases based on changing demographics. J Am Acad Dermatol 78:457–463.e2

    PubMed  Article  Google Scholar 

  53. Pietropaolo V, Prezioso C, Moens U (2020) Merkel cell polyomavirus and Merkel cell carcinoma. Cancers (Basel) 12(7):1774. https://doi.org/10.3390/cancers12071774

    CAS  Article  Google Scholar 

  54. Purdie KJ, Proby CM, Rizvi H et al (2018) The role of human papillomaviruses and polyomaviruses in BRAF-inhibitor induced cutaneous squamous cell carcinoma and benign squamoproliferative lesions. Front Microbiol 9:1806

    PubMed  PubMed Central  Article  Google Scholar 

  55. Rascovan N, Monteil Bouchard S, Grob JJ et al (2016) Human polyomavirus‑6 infecting lymph nodes of a patient with an angiolymphoid hyperplasia with eosinophilia or Kimura disease. Clin Infect Dis 62:1419–1421

    CAS  PubMed  Article  Google Scholar 

  56. Rouanet J, Aubin F, Gaboriaud P et al (2016) Trichodysplasia spinulosa: a polyomavirus infection specifically targeting follicular keratinocytes in immunocompromised patients. Br J Dermatol 174:629–632

    CAS  PubMed  Article  Google Scholar 

  57. Schowalter RM, Pastrana DV, Pumphrey KA et al (2010) Merkel cell polyomavirus and two previously unknown polyomaviruses are chronically shed from human skin. Cell Host Microbe 7:509–515

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. Schrama D, Ugurel S, Becker JC (2012) Merkel cell carcinoma: recent insights and new treatment options. Curr Opin Oncol 24:141–149

    PubMed  Article  Google Scholar 

  59. Scola N, Wieland U, Silling S et al (2012) Prevalence of human polyomaviruses in common and rare types of non-Merkel cell carcinoma skin cancer. Br J Dermatol 167:1315–1320

    CAS  PubMed  Article  Google Scholar 

  60. Scuda N, Hofmann J, Calvignac-Spencer S et al (2011) A novel human polyomavirus closely related to the african green monkey-derived lymphotropic polyomavirus. J Virol 85:4586–4590

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. Sheu JC, Tran J, Rady PL et al (2019) Polyomaviruses of the skin: integrating molecular and clinical advances in an emerging class of viruses. Br J Dermatol 180:1302–1311

    CAS  PubMed  Article  Google Scholar 

  62. Shuda M, Arora R, Kwun HJ et al (2009) Human Merkel cell polyomavirus infection I. MCV T antigen expression in Merkel cell carcinoma, lymphoid tissues and lymphoid tumors. Int J Cancer 125:1243–1249

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. Siebrasse EA, Reyes A, Lim ES et al (2012) Identification of MW polyomavirus, a novel polyomavirus in human stool. J Virol 86:10321–10326

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. van der Meijden E, Horvath B, Nijland M et al (2017) Primary polyomavirus infection, not reactivation, as the cause of trichodysplasia spinulosa in immunocompromised patients. J Infect Dis 215:1080–1084

    PubMed  Google Scholar 

  65. van der Meijden E, Janssens RW, Lauber C et al (2010) Discovery of a new human polyomavirus associated with trichodysplasia spinulosa in an immunocompromized patient. PLoS Pathog 6:e1001024

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  66. van der Meijden E, Kazem S, Burgers MM et al (2011) Seroprevalence of trichodysplasia spinulosa-associated polyomavirus. Emerg Infect Dis 17:1355–1363

    PubMed  PubMed Central  Google Scholar 

  67. Wang Y, Keinonen A, Koskenmies S et al (2019) Occurrence of newly discovered human polyomaviruses in skin of liver transplant recipients and their relation with squamous cell carcinoma in situ and actinic keratosis—a single-center cohort study. Transpl Int 32:516–522

    CAS  PubMed  Article  Google Scholar 

  68. Wieland U, Kreuter A (2011) Merkel cell polyomavirus infection and Merkel cell carcinoma in HIV-positive individuals. Curr Opin Oncol 23:488–493

    PubMed  Article  Google Scholar 

  69. Wieland U, Scola N, Stolte B et al (2012) No evidence for a causal role of Merkel cell polyomavirus in keratoacanthoma. J Am Acad Dermatol 67:41–46

    PubMed  Article  Google Scholar 

  70. Wieland U, Silling S, Hellmich M et al (2014) Human polyomaviruses 6, 7, 9, 10 and trichodysplasia spinulosa-associated polyomavirus in HIV-infected men. J Gen Virol 95:928–932

    CAS  PubMed  Article  Google Scholar 

  71. Wieland U, Silling S, Scola N et al (2011) Merkel cell polyomavirus infection in HIV-positive men. Arch Dermatol 147:401–406

    PubMed  Article  Google Scholar 

  72. Yu G, Greninger AL, Isa P et al (2012) Discovery of a novel polyomavirus in acute diarrheal samples from children. PLoS One 7:e49449

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrike Wieland.

Ethics declarations

Interessenkonflikt

S. Silling, A. Kreuter und U. Wieland geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien. Für Bildmaterial oder anderweitige Angaben innerhalb des Manuskripts, über die Patienten zu identifizieren sind, liegt von ihnen und/oder ihren gesetzlichen Vertretern eine schriftliche Einwilligung vor.

Additional information

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Silling, S., Kreuter, A. & Wieland, U. Hauterkrankungen durch humane Polyomaviren. Hautarzt 73, 426–433 (2022). https://doi.org/10.1007/s00105-022-04993-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00105-022-04993-8

Schlüsselwörter

  • Dermatosen
  • Merkelzellkarzinom
  • Trichodysplasia spinulosa
  • Immunsuppression
  • Hautveränderungen

Keywords

  • Dermatoses
  • Merkel cell carcinoma
  • Trichodysplasia spinulosa
  • Immunosuppression
  • Skin lesions