Skip to main content

Neues von der optischen Kohärenztomographie

Advances in optical coherence tomography

Zusammenfassung

Die optische Kohärenztomographie (OCT) konnte sich in den letzten Jahren nicht nur im akademisch-wissenschaftlichen, sondern auch im dermatologischen Alltag etablieren. Hierbei liegt ihr Hauptfokus auf epithelialen Hauttumoren, deren Diagnostik intuitiv und innerhalb weniger Sekunden gelingt. Dadurch können Basalzellkarzinome, aktinische Keratosen und unterschiedliche Stufen der Feldkanzerisierung diagnostiziert und auf Therapieansprechen oder ein eventuelles Rezidiv überwacht werden. Dies ermöglicht häufig einen Verzicht auf eine invasive Probeentnahme. Seit Kurzem wurde das Einsatzgebiet der OCT und ihrer neuesten Weiterentwicklung, der dynamischen OCT (D-OCT), um weitere nichtonkologische dermatologische Krankheitsbilder, vor allem entzündliche Dermatosen, erweitert. Analysiert werden können ebenso physiologische Hautparameter, wie die Hydratisierung. Dank der automatischen Gefäßdarstellung und der Messung objektiver Parameter, wie Epidermisdicke, Blutfluss in unterschiedlichen Tiefen, Abschwächungskoeffizient und Rauheit, können immer mehr Charakteristika der Haut nichtinvasiv und standardisiert untersucht werden. Neue potenzielle Einsatzgebiete sind Ekzeme, kontaktallergische Dermatitis, Psoriasis, Rosazea, Teleangiektasien, akute wie chronische Wunden, Melasma und Naevus flammeus, aber auch melanozytäre Läsionen.

Abstract

Optical coherence tomography (OCT) has been able to establish itself in recent years not only in academic-scientific, but also in everyday dermatological practice. Its focus lies on epithelial tumors of the skin, which can be diagnosed intuitively and within a few seconds. Thus, basal cell carcinomas, actinic keratoses, and different stages of field cancerization can be diagnosed and monitored for response to therapy or possible recurrence. This often helps to avoid invasive sample extraction. Recently, the field of OCT and its latest advancement, dynamic OCT (D-OCT), has been expanded to include non-oncologic dermatological diseases. This encompasses inflammatory dermatoses and the analysis of physiological skin parameters such as hydration. Thanks to automated vascular imaging and the measurement of objective parameters such as epidermal thickness, blood flow at depth, optical attenuation coefficient, and skin roughness, more and more characteristics of the skin can be studied in a noninvasive and standardized way. New potential areas of application are eczema, contact allergic dermatitis, psoriasis, rosacea, telangiectasia, acute and chronic wounds, melasma and nevus flammeus but also melanocytic lesions.

This is a preview of subscription content, access via your institution.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. 1.

    Welzel J, Lankenau E, Birngruber R, Engelhardt R (1997) Optical coherence tomography of the human skin. J Am Acad Dermatol 37(6):958–963. https://doi.org/10.1016/s0190-9622(97)70072-0

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    di Ruffano FL, Dinnes J, Deeks JJ et al (2018) Optical coherence tomography for diagnosing skin cancer in adults. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.cd013189

    Article  Google Scholar 

  3. 3.

    Welzel J, Schuh S, De Carvalho N et al (2021) Dynamic optical coherence tomography shows characteristic alterations of blood vessels in malignant melanoma. J Eur Acad Dermatol Venereol 35(5):1087–1093. https://doi.org/10.1111/jdv.17080

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Manfredini M, Liberati S, Ciardo S et al (2020) Microscopic and functional changes observed with dynamic optical coherence tomography for severe refractory atopic dermatitis treated with dupilumab. Skin Res Technol 26(6):779–787. https://doi.org/10.1111/srt.12868

    Article  PubMed  Google Scholar 

  5. 5.

    Ruini C, Rahimi F, Fiocco Z et al (2021) Optical coherence tomography for patch test grading: A prospective study on its use for noninvasive diagnosis of allergic contact dermatitis. Contact Dermatitis 84(3):183–191. https://doi.org/10.1111/cod.13714

    Article  PubMed  Google Scholar 

  6. 6.

    Welzel J, Bruhns M, Wolff HH (2003) Optical coherence tomography in contact dermatitis and psoriasis. Arch Dermatol Res 295(2):50–55. https://doi.org/10.1007/s00403-003-0390-y

    Article  PubMed  Google Scholar 

  7. 7.

    Manfredini M, Bettoli V, Sacripanti G et al (2019) The evolution of healthy skin to acne lesions: a longitudinal, in vivo evaluation with reflectance confocal microscopy and optical coherence tomography. J Eur Acad Dermatol Venereol 33(9):1768–1774. https://doi.org/10.1111/jdv.15641

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Rajabi-Estarabadi A, Vasquez-Herrera NE, Martinez-Velasco MA et al (2020) Optical coherence tomography in diagnosis of inflammatory scalp disorders. J Eur Acad Dermatol Venereol 34(9):2147–2151. https://doi.org/10.1111/jdv.16304

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Ghosh B, Mandal M, Mitra P, Chatterjee J (2021) Attenuation corrected-optical coherence tomography for quantitative assessment of skin wound healing and scar morphology. J Biophotonics 14(4):e202000357. https://doi.org/10.1002/jbio.202000357

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Holmes J, Schuh S, Bowling FL, Mani R, Welzel J (2019) Dynamic optical coherence tomography is a new technique for imaging skin around lower extremity wounds. Int J Low Extrem Wounds 18(1):65–74. https://doi.org/10.1177/1534734618821015

    Article  PubMed  Google Scholar 

  11. 11.

    Sattler EC, Poloczek K, Kästle R, Welzel J (2013) Confocal laser scanning microscopy and optical coherence tomography for the evaluation of the kinetics and quantification of wound healing after fractional laser therapy. J Am Acad Dermatol 69(4):e165–e173. https://doi.org/10.1016/j.jaad.2013.04.052

    Article  PubMed  Google Scholar 

  12. 12.

    Kislevitz M, Akgul Y, Wamsley C, Hoopman J, Kenkel J (2020) Use of optical coherence tomography (OCT) in aesthetic skin assessment—a short review. Lasers Surg Med 52(8):699–704. https://doi.org/10.1002/lsm.23219

    Article  PubMed  Google Scholar 

  13. 13.

    Sandby-Møller J, Poulsen T, Wulf HC (2003) Epidermal thickness at different body sites: relationship to age, gender, pigmentation, blood content, skin type and smoking habits. Acta Derm Venereol 83(6):410–413. https://doi.org/10.1080/00015550310015419

    Article  PubMed  Google Scholar 

  14. 14.

    Kaya G, Saurat JH (2007) Dermatoporosis: a chronic cutaneous insufficiency/fragility syndrome. Clinicopathological features, mechanisms, prevention and potential treatments. Dermatology 215(4):284–294. https://doi.org/10.1159/000107621

    Article  PubMed  Google Scholar 

  15. 15.

    Morsy H, Kamp S, Thrane L et al (2010) Optical coherence tomography imaging of psoriasis vulgaris: correlation with histology and disease severity. Arch Dermatol Res 302(2):105–111. https://doi.org/10.1007/s00403-009-1000-4

    Article  PubMed  Google Scholar 

  16. 16.

    Olsen J, Holmes J, Jemec GB (2018) Advances in optical coherence tomography in dermatology—a review. J Biomed Opt 23(4):1–10. https://doi.org/10.1117/1.JBO.23.4.040901

    Article  PubMed  Google Scholar 

  17. 17.

    Chang S, Bowden A (2019) Review of methods and applications of attenuation coefficient measurements with optical coherence tomography. J Biomed Opt 24(9):90901

    Article  Google Scholar 

  18. 18.

    Chen WJ, Chang YY, Shen SC et al (2018) In vivo detection of UV-induced acute skin effects using optical coherence tomography. Biomed Opt Express 9(9):4235–4245. https://doi.org/10.1364/BOE.9.004235

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Olsen J, Gaetti G, Grandahl K, Jemec GBE (2021) Optical coherence tomography quantifying photo aging: skin microvasculature depth, epidermal thickness and UV exposure. Arch Dermatol Res. https://doi.org/10.1007/s00403-021-02245-8

    Article  PubMed  Google Scholar 

  20. 20.

    Themstrup L, Welzel J, Ciardo S et al (2016) Validation of Dynamic optical coherence tomography for non-invasive, in vivo microcirculation imaging of the skin. Microvasc Res 107:97–105. https://doi.org/10.1016/j.mvr.2016.05.004

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Lindso Andersen P, Olsen J, Friis KBE et al (2018) Vascular morphology in normal skin studied with dynamic optical coherence tomography. Exp Dermatol 27(9):966–972. https://doi.org/10.1111/exd.13680

    Article  PubMed  Google Scholar 

  22. 22.

    Sigsgaard V, Themstrup L, Theut Riis P, Olsen J, Jemec GB (2018) In vivo measurements of blood vessels’ distribution in non-melanoma skin cancer by dynamic optical coherence tomography—a new quantitative measure? Skin Res Technol 24(1):123–128. https://doi.org/10.1111/srt.12399

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Staibano S, Boscaino A, Salvatore G, Orabona P, Palombini L, De Rosa G (1996) The prognostic significance of tumor angiogenesis in nonaggressive and aggressive basal cell carcinoma of the human skin. Hum Pathol 27(7):695–700. https://doi.org/10.1016/s0046-8177(96)90400-1

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Themstrup L, Pellacani G, Welzel J, Holmes J, Jemec GBE, Ulrich M (2017) In vivo microvascular imaging of cutaneous actinic keratosis, Bowen’s disease and squamous cell carcinoma using dynamic optical coherence tomography. J Eur Acad Dermatol Venereol 31(10):1655–1662. https://doi.org/10.1111/jdv.14335

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Schuh S, Holmes J, Ulrich M et al (2017) Imaging blood vessel morphology in skin: dynamic optical coherence Tomography as a novel potential diagnostic tool in dermatology. Dermatol Ther 7(2):187–202. https://doi.org/10.1007/s13555-017-0175-4

    Article  Google Scholar 

  26. 26.

    Aldahan AS, Chen LL, Fertig RM et al (2017) Vascular features of nail psoriasis using dynamic optical coherence tomography. Skin Appendage Disord 2(3–4):102–108. https://doi.org/10.1159/000449230

    Article  PubMed  Google Scholar 

  27. 27.

    Themstrup L, Ciardo S, Manfredi M et al (2016) In vivo, micro-morphological vascular changes induced by topical brimonidine studied by dynamic optical coherence tomography. J Eur Acad Dermatol Venereol 30(6):974–979. https://doi.org/10.1111/jdv.13596

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Taudorf EH, Olsen J, Lindsø Andersen P, Bouazzi D, Jemec GBE (2021) Dynamic optical coherence tomography imaging of Telangiectasia prior to intense pulsed light treatment-an opportunity to target treatment? Lasers Surg Med 53(2):212–218. https://doi.org/10.1002/lsm.23280

    Article  PubMed  Google Scholar 

  29. 29.

    Mehrabi JN, Holmes J, Abrouk M et al (2021) Vascular characteristics of port wine birthmarks as measured by dynamic optical coherence tomography. J Am Acad Dermatol. https://doi.org/10.1016/j.jaad.2021.08.007

    Article  PubMed  Google Scholar 

  30. 30.

    Pomerantz H, Christman MP, Bloom BS et al (2021) Dynamic optical coherence tomography of cutaneous blood vessels in melasma and vessel response to oral Tranexamic acid. Lasers Surg Med 53(6):861–864. https://doi.org/10.1002/lsm.23345

    Article  PubMed  Google Scholar 

  31. 31.

    Mani R, Holmes J, Rerkasem K, Papanas N (2021) Blood vessel density measured using dynamic optical coherence tomography is a tool for wound healers. Int J Low Extrem Wounds. https://doi.org/10.1177/15347346211017334

    Article  PubMed  Google Scholar 

  32. 32.

    Koehler MJ, Kellner K, Hipler UC, Kaatz M (2015) Acute UVB-induced epidermal changes assessed by multiphoton laser tomography. Skin Res Technol 21(2):137–143. https://doi.org/10.1111/srt.12168

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Wan B, Ganier C, Du-Harpur X et al (2020) Applications and future directions for optical coherence tomography in dermatology. Br J Dermatol. https://doi.org/10.1111/bjd.19553

    Article  PubMed  Google Scholar 

  34. 34.

    De Carvalho N, Welzel J, Schuh S et al (2018) The vascular morphology of melanoma is related to Breslow index: an in vivo study with dynamic optical coherence tomography. Exp Dermatol 27(11):1280–1286. https://doi.org/10.1111/exd.13783

    Article  PubMed  Google Scholar 

  35. 35.

    Ulrich M, Themstrup L, de Carvalho N et al (2018) Dynamic optical coherence tomography of skin blood vessels—proposed terminology and practical guidelines. J Eur Acad Dermatol Venereol 32(1):152–155. https://doi.org/10.1111/jdv.14508

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Cristel Ruini.

Ethics declarations

Interessenkonflikt

C. Ruini, F. Daxenberger, C. Gust, S. Schuh, L. E. French, J. Welzel und E. C. Sattler geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

figureqr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ruini, C., Daxenberger, F., Gust, C. et al. Neues von der optischen Kohärenztomographie. Hautarzt 72, 1048–1057 (2021). https://doi.org/10.1007/s00105-021-04905-2

Download citation

Schlüsselwörter

  • Aktinische Keratose
  • Basalzellkarzinom
  • Psoriasis
  • Rosazea
  • Teleangiektasie

Keywords

  • Keratosis, actinic
  • Carcinoma, basal cell
  • Psoriasis
  • Rosacea
  • Teleangiectasis