Skip to main content

Konfokale Line-Field-OCT

Confocal line-field OCT

Zusammenfassung

Die optische Kohärenztomographie (OCT) und die konfokale Lasermikroskopie (KLM) sind in der klinischen dermatologischen Routinediagnostik bereits etablierte nichtinvasive Methoden. Während die KLM insbesondere hilfreich bei der Unterscheidung von Naevi und Melanomen ist, eignet sich die OCT vor allem zur Diagnostik und Differenzierung von nichtmelanozytärem Hautkrebs. Die LC-OCT („line-field confocal optical coherence tomography“) hingegen ist ein neues innovatives Verfahren, das über eine bessere zelluläre Auflösung als die OCT und höhere Eindringtiefe als die KLM verfügt. Mit der LC-OCT sind im Vergleich zur KLM auch 3‑D-Aufnahmen in Echtzeit möglich. Sie eignet sich sehr gut zur Untersuchung von Hautläsionen aller Art, da sie die Vorteile von KLM und OCT vereint.

Abstract

Optical coherence tomography (OCT) and confocal laser microscopy (CLSM) are established non-invasive methods in clinical dermatological routine diagnosis. Whereas CLSM is especially useful to distinguish between nevi and melanoma, OCT is suitable for the diagnosis and differentiation of non-melanoma skin cancer. Line-field confocal optical coherence tomography (LC-OCT) is a new innovative device, which has better cellular resolution than OCT and a higher penetration depth than CLSM. Similar to CLSM, LC-OCT also allows 3D images in real time to be taken. Therefore LC-OCT is very useful for the examination of skin lesions of all kinds, since it unites the features of CLSM and OCT.

This is a preview of subscription content, access via your institution.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. 1.

    Welzel J, Schuh S (2017) Nichtinvasive Diagnostik in der Dermatologie. J Dtsch Dermatol Ges 15:999–1017

    PubMed  Google Scholar 

  2. 2.

    Holmes J, von Braunmühl T, Berking C et al (2018) Optical coherence tomography of basal cell carcinoma: influence of location, subtype, observer variability and image quality on diagnostic performance. Br J Dermatol 178:1102–1110

    CAS  Article  Google Scholar 

  3. 3.

    Ulrich M, Maier T, Kurzen H et al (2015) The sensitivity and specificity of optical coherence tomography for the assisted diagnosis of non-pigmented basal cell carcinoma—an observational study. Br J Dermatol 173:428–435

    CAS  Article  Google Scholar 

  4. 4.

    Dinnes J, Deeks JJ, Chuchu N et al (2018) Reflectance confocal microscopy for diagnosing keratinocyte skin cancers in adults. Cochrane Database Syst Rev 12:CD13191. https://doi.org/10.1002/14651858.CD013191

    Article  PubMed  Google Scholar 

  5. 5.

    Que SK, Grant-Kels JM, Longo C, Pellacani G (2016) Basics of confocal microscopy and the complexity of diagnosing skin tumors: new imaging tools in clinical practice, diagnostic workflows, cost-estimate, and new trends. Dermatol Clin 34:367–375

    CAS  Article  Google Scholar 

  6. 6.

    Ferrante di Ruffano L, Dinnes J, Deeks JJ et al (2018) Optical coherence tomography for diagnosing skin cancer in adults. Cochrane Database Syst Rev 12:CD13189. https://doi.org/10.1002/14651858

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Welzel J, Schuh S (2018) Optical coherence tomography for skin pathologies. Ophthalmologe 115:524–527

    CAS  Article  Google Scholar 

  8. 8.

    Schuh S, Holmes J, Ulrich M et al (2017) Imaging blood vessel morphology in skin: dynamic optical coherence tomography as a novel potential diagnostic tool in dermatology. Dermatol Ther (Heidelb) 7:187–202

    Article  Google Scholar 

  9. 9.

    Ogien J, Levecq O, Azimani H, Dubois A (2020) Dual-mode line-field confocal optical coherence tomography for ultrahigh-resolution vertical and horizontal section imaging of human skin in vivo. Biomed Opt Express 11:1327–1335

    CAS  Article  Google Scholar 

  10. 10.

    Davis A, Levecq O, Azimani H et al (2019) Simultaneous dual-band line-field confocal optical coherence tomography: application to skin imaging. Biomed Opt Express 10:694–706

    CAS  Article  Google Scholar 

  11. 11.

    Dubois A, Levecq O, Azimani H et al (2018) Line-field confocal optical coherence tomography for high-resolution noninvasive imaging of skin tumors. J Biomed Opt 23:1–9

    Article  Google Scholar 

  12. 12.

    Dubois A, Levecq O, Azimani H et al (2018) Line-field confocal time-domain optical coherence tomography with dynamic focusing. Opt Express 26:33534–33542

    CAS  Article  Google Scholar 

  13. 13.

    Pedrazzani M, Breugnot J, Rouaud-Tinguely P et al (2020) Comparison of line-field confocal optical coherence tomography images with histological sections: validation of a new method for in vivo and non-invasive quantification of superficial dermis thickness. Skin Res Technol 26:398–404. https://doi.org/10.1111/srt.12815

    Article  PubMed  Google Scholar 

  14. 14.

    Ruini C, Sattler E (2020) Konfokale Line-Field-OCT: die eierlegende Wollmilchsau? Akt Dermatol 46:148–151

    Article  Google Scholar 

  15. 15.

    Ruini C, Schuh S, Sattler E, Welzel J (2021) Line-field confocal optical coherence tomography-practical applications in dermatology and comparison with established imaging methods. Skin Res Technol 27:340–352

    Article  Google Scholar 

  16. 16.

    Rajadhyaksha M, Grossman M, Esterowitz D, Webb RH, Anderson RR (1995) In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast. J Invest Dermatol 104:946–952

    CAS  Article  Google Scholar 

  17. 17.

    Que SK, Fraga-Braghiroli N, Grant-Kels JM, Rabinovitz HS, Oliviero M, Scope A (2015) Through the looking glass: basics and principles of reflectance confocal microscopy. J Am Acad Dermatol 73:276–284

    Article  Google Scholar 

  18. 18.

    Monnier J, Tognetti L, Miyamoto M et al (2020) In vivo characterization of healthy human skin with a novel, non-invasive imaging technique: line-field confocal optical coherence tomography. J Eur Acad Dermatol Venereol 34:2914–2921

    CAS  Article  Google Scholar 

  19. 19.

    Suppa M, Fontaine M, Dejonckheere G et al (2021) Line-field confocal optical coherence tomography of basal cell carcinoma: a descriptive study. J Eur Acad Dermatol Venereol 35:1099–1110

    CAS  Article  Google Scholar 

  20. 20.

    Ruini C, Schuh S, Gust C (2021) Line-field optical coherence tomography: in vivo diagnosis of basal cell carcinoma subtypes compared to histopathology. Clin Exp Dermatol. https://doi.org/10.1111/ced.14762

    Article  PubMed  Google Scholar 

  21. 21.

    Lenoir C, Diet G, Cinotti E (2021) Line-field confocal optical coherence tomography of sebaceous hyperplasia: a case series. J Eur Acad Dermatol Venereol 35:e509–e511

    CAS  Article  Google Scholar 

  22. 22.

    Ruini C, Schuh S, Gust C, Hartmann D, French LE, Sattler EC, Welzel J (2021) In-vivo LC-OCT evaluation of the downward proliferation pattern of keratinocytes in actinic keratosis in comparison with histology: first impressions from a pilot study. Cancers (Basel) 13:2856

    Article  Google Scholar 

  23. 23.

    Cinotti E, Tognetti L, Cartocci A (2021) Line-field confocal optical coherence tomography for actinic keratosis and squamous cell carcinoma: a descriptive study. Clin Exp Dermatol. https://doi.org/10.1111/ced.14801

    Article  PubMed  Google Scholar 

  24. 24.

    Ruini C, Schuh S, Gust C, Hartmann D, French LE, Sattler EC, Welzel C (2021) Line-field confocal optical coherence tomography for the in-vivo real-time diagnosis of different stages of keratinocyte skin cancer: a preliminary study. J Eur Acad Dermatol Venereol. https://doi.org/10.1111/jdv.17603

    Article  PubMed  Google Scholar 

  25. 25.

    Lacarrubba F, Verzì AE, Puglisi DF et al (2021) Line-field confocal optical coherence tomography: a novel, non-invasive imaging technique for a rapid, in-vivo diagnosis of herpes infection of the skin. J Eur Acad Dermatol Venereol 35:e404–e406

    CAS  PubMed  Google Scholar 

  26. 26.

    Ruini C, Schuh S, Pellacani G, French L, Welzel J, Sattler E (2020) In vivo imaging of sarcoptes scabiei infestation using line-field confocal optical coherence tomography. J Eur Acad Dermatol Venereol 34:e808–e809

    CAS  Article  Google Scholar 

  27. 27.

    Gallay C, Ventéjou S, Cristen-Zaech S (2021) Line-field confocal optical coherence tomography of pyogenic granulomas in children: report of two cases. J Eur Acad Dermatol Venereol. https://doi.org/10.1111/jdv.17608

    Article  PubMed  Google Scholar 

  28. 28.

    Lacarrubba F, Verzì AE, Puglisi DF et al (2021) Line-field confocal optical coherence tomography of xanthogranuloma: correlation with vertical and horizontal histopathology. J Cutan Pathol 48:1208–1211

    Article  Google Scholar 

  29. 29.

    Tognetti L, Carraro A, Cinotti E et al (2021) Line-field confocal optical coherence tomography for non-invasive diagnosis of lichenoid dermatoses of the childhood: a case series. Skin Res Technol. https://doi.org/10.1111/srt.13075

    Article  PubMed  Google Scholar 

  30. 30.

    Tognetti L, Cinotti E, Suppa M et al (2021) Line field confocal optical coherence tomography: an adjunctive tool in the diagnosis of autoimmune bullous diseases. J Biophotonics 14:e202000449

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sandra Schuh.

Ethics declarations

Interessenkonflikt

S. Schuh, C. Ruini, E. Sattler und J. Welzel geben an, dass kein Interessenkonflikt besteht. Das LC-OCT Gerät wurde für die Studie kostenfrei an beiden Zentren zur Verfügung gestellt. FöFoLe (Förderprogramm für Forschung und Lehre) Grant der Ludwig-Maximilians-Universität München 1022-2018.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

figureqr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schuh, S., Ruini, C., Sattler, E. et al. Konfokale Line-Field-OCT. Hautarzt 72, 1039–1047 (2021). https://doi.org/10.1007/s00105-021-04900-7

Download citation

Schlüsselwörter

  • Konfokale Lasermikroskopie
  • Melanom
  • Aktinische Keratose
  • Hyperkeratose
  • Parakeratose

Keywords

  • Confocal laser microscopy
  • Melanoma
  • Actinic keratosis
  • Hyperkeratosis
  • Parakeratosis