Skip to main content
Log in

Grundlegende Aspekte zum Hautmikrobiom

General aspects regarding the skin microbiome

  • Leitthema
  • Published:
Der Hautarzt Aims and scope Submit manuscript

Zusammenfassung

Der menschliche Körper wird von Billionen von Mikroorganismen bevölkert, die in ihrer Gemeinschaft als Mikrobiota bezeichnet werden. Unsere äußere Barriere, die Haut, beherbergt eine Vielzahl verschiedener Bakterien und Pilze, aber auch Viren und Milben sind auf ihr zu finden. Die Heterogenität der Haut unterschiedlicher Körperregionen führt zu einer Vielzahl unterschiedlicher ökologischer Nischen. So begünstigen z. B. Feuchtigkeit, Talg oder Schweiß das Wachstum unterschiedlicher Mikroorganismen. Dies hat lange Zeit erschwert, globale und objektive Aussagen über die Zusammensetzung der Mikrobengemeinschaft zu treffen. Heute, etwa 10 Jahre nach den ersten Metagenomanalysen, welche mithilfe Hochdurchsatz-DNA-Sequenzierungstechniken durchgeführt wurden, können derartige Studien kosteneffizient in der Forschung eingesetzt werden. Sie ermöglichen neben der Erkenntnis, wer auf, in, und mit uns lebt, auch differenzierte Analysen zu klinischen Fragestellungen. In diesem Beitrag möchten wir die neueren Erkenntnisse der Erforschung der (physiologischen) Hautmikroben zusammenfassen und dabei die angewandten Analysetechniken kurz erläutern.

Abstract

The human body is densely populated by trillions of microorganisms, which are collectively known as the human microbiota. On the outermost barrier, the skin, a plethora of different bacteria and fungi as well as viruses and mites reside. The skin of different body sites shows a high degree of heterogeneity, generating multiple ecological niches. For example, moisture, sebum and sweat promote the growth of different microorganisms. This diversity has hampered a global and objective analysis of the composition of the microbiota in the past. Today, approximately 10 years after the development of metagenome analysis by next generation high-throughput DNA sequencing, these techniques are now established and affordable in research fields. These techniques enable investigations on the microorganisms living in and on body surfaces and represent an important tool in diverse clinical questions. This review addresses new developments in the (physiological) composition of the skin microbiota and briefly summarizes the research techniques applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Basler K, Galliano MF, Bergmann S et al (2017) Biphasic influence of Staphylococcus aureus on human epidermal tight junctions. Ann N Y Acad Sci 1405:53–70

    Article  Google Scholar 

  2. Belkaid Y, Segre JA (2014) Dialogue between skin microbiota and immunity. Science 346:954–959

    Article  CAS  Google Scholar 

  3. Consortium HMP (2012) A framework for human microbiome research. Nature 486:215–221

    Article  Google Scholar 

  4. Cundell AM (2018) Microbial Ecology of the Human Skin. Microb Ecol 76:113–120

    Article  Google Scholar 

  5. Dekio I, Hayashi H, Sakamoto M et al (2005) Detection of potentially novel bacterial components of the human skin microbiota using culture-independent molecular profiling. J Med Microbiol 54:1231–1238

    Article  CAS  Google Scholar 

  6. Dominguez-Bello MG, Costello EK, Contreras M et al (2010) Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A 107:11971–11975

    Article  Google Scholar 

  7. Eyerich S, Eyerich K, Traidl-Hoffmann C et al (2018) Cutaneous barriers and skin immunity: differentiating a connected network. Trends Immunol 39:315–327

    Article  CAS  Google Scholar 

  8. Ferretti P, Farina S, Cristofolini M et al (2017) Experimental metagenomics and ribosomal profiling of the human skin microbiome. Exp Dermatol 26:211–219

    Article  Google Scholar 

  9. Fierer N, Hamady M, Lauber CL et al (2008) The influence of sex, handedness, and washing on the diversity of hand surface bacteria. Proc Natl Acad Sci USA 105:17994–17999

    Article  CAS  Google Scholar 

  10. Gaitanis G, Magiatis P, Hantschke M et al (2012) The Malassezia genus in skin and systemic diseases. Clin Microbiol Rev 25:106–141

    Article  Google Scholar 

  11. Goodrich JK, Di Rienzi SC, Poole AC et al (2014) Conducting a microbiome study. Cell 158:250–262

    Article  CAS  Google Scholar 

  12. Grice EA, Kong HH, Conlan S et al (2009) Topographical and temporal diversity of the human skin microbiome. Science 324:1190–1192

    Article  CAS  Google Scholar 

  13. Grice EA, Kong HH, Renaud G et al (2008) A diversity profile of the human skin microbiota. Genome Res 18:1043–1050

    Article  CAS  Google Scholar 

  14. Grice EA, Segre JA (2011) The skin microbiome. Nature reviews. Microbiology 9:244–253

    CAS  PubMed  Google Scholar 

  15. Jumpstart Consortium Human Microbiome Project Data Generation Working Group (2012) Evaluation of 16S rDNA-based community profiling for human microbiome research. PLoS ONE 7:e39315

    Article  Google Scholar 

  16. Huse SM, Ye Y, Zhou Y et al (2012) A core human microbiome as viewed through 16S rRNA sequence clusters. PLoS ONE 7:e34242

    Article  CAS  Google Scholar 

  17. Iwase T, Uehara Y, Shinji H et al (2010) Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature 465:346–349

    Article  CAS  Google Scholar 

  18. Kong HH, Andersson B, Clavel T et al (2017) Performing skin microbiome research: a method to the madness. J Invest Dermatol 137:561–568

    Article  CAS  Google Scholar 

  19. Kopfnagel V, Harder J, Werfel T (2013) Expression of antimicrobial peptides in atopic dermatitis and possible immunoregulatory functions. Curr Opin Allergy Clin Immunol 13:531–536

    Article  CAS  Google Scholar 

  20. Lai Y, Cogen AL, Radek KA et al (2010) Activation of TLR2 by a small molecule produced by Staphylococcus epidermidis increases antimicrobial defense against bacterial skin infections. J Invest Dermatol 130:2211–2221

    Article  CAS  Google Scholar 

  21. Lax S, Smith DP, Hampton-Marcell J et al (2014) Longitudinal analysis of microbial interaction between humans and the indoor environment. Science 345:1048–1052

    Article  CAS  Google Scholar 

  22. Meisel JS, Hannigan GD, Tyldsley AS et al (2016) Skin Microbiome surveys are strongly influenced by experimental design. J Invest Dermatol 136:947–956

    Article  CAS  Google Scholar 

  23. Miajlovic H, Fallon PG, Irvine AD et al (2010) Effect of filaggrin breakdown products on growth of and protein expression by Staphylococcus aureus. J Allergy Clin Immunol 126(183):1184–1190.e1

    Article  CAS  Google Scholar 

  24. Nakatsuji T, Chen TH, Narala S et al (2017) Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis. Sci Transl Med 9. https://doi.org/10.1126/scitranslmed.aah4680

    Article  PubMed  PubMed Central  Google Scholar 

  25. Nakatsuji T, Chiang HI, Jiang SB et al (2013) The microbiome extends to subepidermal compartments of normal skin. Nat Commun 4:1431

    Article  Google Scholar 

  26. Oh J, Byrd AL, Deming C et al (2014) Biogeography and individuality shape function in the human skin metagenome. Nature 514:59–64

    Article  CAS  Google Scholar 

  27. Oh J, Freeman AF, Park M et al (2013) The altered landscape of the human skin microbiome in patients with primary immunodeficiencies. Genome Res 23:2103–2114

    Article  CAS  Google Scholar 

  28. Perez PGI, Gao Z, Jourdain R et al (2016) Body site is a more determinant factor than human population diversity in the healthy skin microbiome. PLoS ONE 11:e151990

    Article  Google Scholar 

  29. Scharschmidt TC, Vasquez KS, Truong HA et al (2015) A wave of regulatory T cells into neonatal skin mediates tolerance to commensal microbes. Immunity 43:1011–1021

    Article  CAS  Google Scholar 

  30. Whittaker RH (1972) Evolution and measurement of species diversity. Taxon 21:213–251

    Article  Google Scholar 

  31. Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A 87:4576–4579

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Roesner.

Ethics declarations

Interessenkonflikt

R. Mikolajczyk wurde von der Hannover Biomedical Research School (HBRS) und dem Zentrum für Infektionsbiologie (ZIB) gefördert. L.M. Roesner gibt an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikolajczyk, R., Roesner, L.M. Grundlegende Aspekte zum Hautmikrobiom. Hautarzt 70, 400–406 (2019). https://doi.org/10.1007/s00105-019-4412-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00105-019-4412-x

Schlüsselwörter

Keywords

Navigation