Skip to main content

Advertisement

Log in

Pharmakologie der Januskinaseinhibitoren

Pharmacology of Janus kinase inhibitors

  • Leitthema
  • Published:
Der Hautarzt Aims and scope Submit manuscript

Zusammenfassung

Die moderne Dermatotherapie wird von der Entwicklung von zahlreichen Biologika, aber auch von kleinen Molekülen dominiert. Januskinaseinhibitoren (JAKi) bilden eine neue Substanzklasse niedermolekularer chemisch synthetisierter Pharmaka, die die intrazelluläre Signaltransduktion von Zytokinrezeptoren hemmen. Zytokine sind in der Pathophysiologie unterschiedlichster Hautkrankheiten von Bedeutung. Viele Zytokine verwenden sog. Typ-I- und -II-Zytokinrezeptoren, die mit den Januskinasen(JAK)1, JAK2, JAK3 oder TYK(Tyrosinkinase)2 interagieren. JAKi befinden sich für entzündliche Hautkrankheiten wie Psoriasis oder atopisches Ekzem bereits in der klinischen Phase-3-Prüfung. Da sie sowohl in oraler als auch in topischer Formulation untersucht werden, könnten sie gerade in der Dermatotherapie schnell Einzug halten. Die Mechanismen von JAKi, ihre Selektivität, erste Wirksamkeitsdaten und ihr Sicherheitsprofil werden in diesem Beitrag diskutiert.

Abstract

Modern dermatotherapy is dominated by the development of various biologicals and small molecules. Janus kinase inhibitors (JAKi) form a novel class of small molecular synthetic compounds inhibiting the intracellular signal transduction of cytokine receptors. Cytokines are key mediators in the pathophysiology of numerous inflammatory skin diseases. Many cytokines use so-called type I and II cytokine receptors, which associate with the Janus kinases JAK1, JAK2, JAK3 or TYK2. JAKi are under clinical investigation for inflammatory skin disease, specifically in phase 3 trials for psoriasis or atopic dermatitis. Since JAKi are tested in oral as well as in topical formulations, they could become very popular in dermatotherapy. The mechanisms of JAKi, their selectivity, preliminary efficacy data, and their safety profile are discussed in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Ghoreschi K, Laurence A, O’Shea JJ (2009) Janus kinases in immune cell signaling. Immunol Rev 228(1):273–287

    CAS  PubMed  PubMed Central  Google Scholar 

  2. O’Shea JJ, Schwartz DM, Villarino AV, Gadina M, McInnes IB, Laurence A (2015) The JAK-STAT pathway: impact on human disease and therapeutic intervention. Annu Rev Med 66:311–328

    PubMed  PubMed Central  Google Scholar 

  3. Welsch K, Holstein J, Laurence A, Ghoreschi K (2017) Targeting JAK/STAT signalling in inflammatory skin diseases with small molecule inhibitors. Eur J Immunol 47(7):1096–1107

    CAS  PubMed  Google Scholar 

  4. Ghoreschi K, Gadina M (2014) Jakpot! New small molecules in autoimmune and inflammatory diseases. Exp Dermatol 23(1):7–11

    CAS  PubMed  Google Scholar 

  5. Fischer EH, Krebs EG (1966) Relationship of structure to function of muscle phosphorylase. Fed Proc 25(5):1511–1520

    CAS  PubMed  Google Scholar 

  6. Ghoreschi K, Jesson MI, Li X, Lee JL, Ghosh S, Alsup JW et al (2011) Modulation of innate and adaptive immune responses by tofacitinib (CP-690,550). J Immunol 186(7):4234–4243

    CAS  PubMed  Google Scholar 

  7. Ghoreschi K, Laurence A, O’Shea JJ (2009) Selectivity and therapeutic inhibition of kinases: to be or not to be? Nat Immunol 10(4):356–360

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Pesu M, Candotti F, Husa M, Hofmann SR, Notarangelo LD, O’Shea JJ (2005) Jak3, severe combined immunodeficiency, and a new class of immunosuppressive drugs. Immunol Rev 203:127–142

    CAS  PubMed  Google Scholar 

  9. Russell SM, Tayebi N, Nakajima H, Riedy MC, Roberts JL, Aman MJ et al (1995) Mutation of Jak3 in a patient with SCID: essential role of Jak3 in lymphoid development. Science 270(5237):797–800

    CAS  PubMed  Google Scholar 

  10. Nosaka T, vanDeursen J, Tripp RA, Thierfelder WE, Witthuhn BA, McMickle AP et al (1995) Defective lymphoid development in mice lacking Jak3. Blood 86(10):486

    Google Scholar 

  11. Minegishi Y, Saito M, Morio T, Watanabe K, Agematsu K, Tsuchiya S et al (2006) Human tyrosine kinase 2 deficiency reveals its requisite roles in multiple cytokine signals involved in innate and acquired immunity. Immunity 25(5):745–755

    CAS  PubMed  Google Scholar 

  12. Kreins AY, Ciancanelli MJ, Okada S, Kong XF, Ramirez-Alejo N, Kilic SS et al (2015) Human TYK2 deficiency: mycobacterial and viral infections without hyper-IgE syndrome. J Exp Med 212(10):1641–1662

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Dhingra N, Guttman-Yassky E (2014) A possible role for IL-17A in establishing Th2 inflammation in murine models of atopic dermatitis. J Invest Dermatol 134(8):2071–2074

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Forster M, Chaikuad A, Bauer SM, Holstein J, Robers MB, Corona CR et al (2016) Selective JAK3 inhibitors with a covalent reversible binding mode targeting a new induced fit binding pocket. Cell Chem Biol 23(11):1335–1340

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Forster M, Chaikuad A, Dimitrov T, Doring E, Holstein J, Berger BT et al (2018) Development, optimization, and structure-activity relationships of covalent-reversible JAK3 inhibitors based on a tricyclic Imidazo[5,4-d]pyrrolo[2,3-b]pyridine scaffold. J Med Chem 61(12):5350–5366

    CAS  PubMed  Google Scholar 

  16. Wrobleski ST, Moslin R, Lin S, Zhang Y, Spergel S, Kempson J et al (2019) Highly selective inhibition of tyrosine kinase 2 (TYK2) for the treatment of autoimmune diseases: discovery of the allosteric inhibitor BMS-986165. J Med Chem 62(20):8973–8995

    CAS  PubMed  Google Scholar 

  17. Gladman D, Rigby W, Azevedo VF, Behrens F, Blanco R, Kaszuba A et al (2017) Tofacitinib for psoriatic arthritis in patients with an inadequate response to TNF inhibitors. N Engl J Med 377(16):1525–1536

    CAS  PubMed  Google Scholar 

  18. Merola JF, Elewski B, Tatulych S, Lan S, Tallman A, Kaur M (2017) Efficacy of tofacitinib for the treatment of nail psoriasis: two 52-week, randomized, controlled phase 3 studies in patients with moderate-to-severe plaque psoriasis. J Am Acad Dermatol 77(1):79–87.e1

    CAS  PubMed  Google Scholar 

  19. Papp K, Gordon K, Thaci D, Morita A, Gooderham M, Foley P et al (2018) Phase 2 trial of selective tyrosine kinase 2 inhibition in psoriasis. N Engl J Med 379(14):1313–1321

    CAS  PubMed  Google Scholar 

  20. Punwani N, Scherle P, Flores R, Shi J, Liang J, Yeleswaram S et al (2012) Preliminary clinical activity of a topical JAK1/2 inhibitor in the treatment of psoriasis. J Am Acad Dermatol 67(4):658–664

    CAS  PubMed  Google Scholar 

  21. Bissonnette R, Papp KA, Poulin Y, Gooderham M, Raman M, Mallbris L et al (2016) Topical tofacitinib for atopic dermatitis: a phase IIa randomized trial. Br J Dermatol 175(5):902–911

    CAS  PubMed  Google Scholar 

  22. Guttman-Yassky E, Silverberg JI, Nemoto O, Forman SB, Wilke A, Prescilla R et al (2019) Baricitinib in adult patients with moderate-to-severe atopic dermatitis: a phase 2 parallel, double-blinded, randomized placebo-controlled multiple-dose study. J Am Acad Dermatol 80(4):913–921.e9

    CAS  PubMed  Google Scholar 

  23. Gilhar A, Keren A, Paus R (2019) JAK inhibitors and alopecia areata. Lancet 393(10169):318–319

    PubMed  Google Scholar 

  24. Mobasher P, Guerra R, Jiayang Li S, Frangos J, Ganesan AK, Huang V (2019) Open label pilot study of 2 % zofacitinib for the treatment of refractory vitiligo. Br J Dermatol. https://doi.org/10.1111/bjd.18606

    Article  PubMed  PubMed Central  Google Scholar 

  25. Relke N, Gooderham M (2019) The use of Janus kinase inhibitors in vitiligo: a review of the literature. J Cutan Med Surg 23(3):298–306

    CAS  PubMed  Google Scholar 

  26. Rothstein B, Joshipura D, Saraiya A, Abdat R, Ashkar H, Turkowski Y et al (2017) Treatment of vitiligo with the topical Janus kinase inhibitor ruxolitinib. J Am Acad Dermatol 76(6):1054–1060.e1

    CAS  PubMed  Google Scholar 

  27. Chen Z, Wang X, Ye S (2019) Tofacitinib in amyopathic dermatomyositis-associated interstitial lung disease. N Engl J Med 381(3):291–293

    PubMed  Google Scholar 

  28. Wallace DJ, Furie RA, Tanaka Y, Kalunian KC, Mosca M, Petri MA et al (2018) Baricitinib for systemic lupus erythematosus: a double-blind, randomised, placebo-controlled, phase 2 trial. Lancet 392(10143):222–231

    CAS  PubMed  Google Scholar 

  29. Juczynska K, Wozniacka A, Waszczykowska E, Danilewicz M, Wagrowska-Danilewicz M, Wieczfinska J et al (2017) Expression of the JAK/STAT signaling pathway in bullous pemphigoid and dermatitis herpetiformis. Mediators Inflamm 2017:6716419

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Sarny S, Hucke M, El-Shabrawi Y (2018) Treatment of mucous membrane pemphigoid with janus kinase inhibitor baricitinib. JAMA Ophthalmol 136(12):1420–1422

    PubMed  Google Scholar 

  31. Amber KT, Maglie R, Solimani F, Eming R, Hertl M (2018) Targeted therapies for Autoimmune bullous diseases: current status. Drugs 78(15):1527–1548

    PubMed  Google Scholar 

  32. Onda M, Ghoreschi K, Steward-Tharp S, Thomas C, O’Shea JJ, Pastan IH et al (2014) Tofacitinib suppresses antibody responses to protein therapeutics in murine hosts. J Immunol 193(1):48–55

    CAS  PubMed  Google Scholar 

  33. Hotz C, Boniotto M, Guguin A, Surenaud M, Jean-Louis F, Tisserand P et al (2016) Intrinsic defect in keratinocyte function leads to inflammation in hidradenitis suppurativa. J Invest Dermatol 136(9):1768–1780

    CAS  PubMed  Google Scholar 

  34. Schmidt T, Solimani F, Pollmann R, Stein R, Schmidt A, Stulberg I et al (2018) TH1/TH17 cell recognition of desmoglein 3 and bullous pemphigoid antigen 180 in patients with lichen planus. J Allergy Clin Immunol 142(2):669–672.e7

    CAS  PubMed  Google Scholar 

  35. Solimani F, Pollmann R, Schmidt T, Schmidt A, Zheng X, Savai R et al (2019) Therapeutic targeting of th17/Tc17 cells leads to clinical improvement of lichen planus. Front Immunol 10:1808

    PubMed  PubMed Central  Google Scholar 

  36. Yang CC, Khanna T, Sallee B, Christiano AM, Bordone LA (2018) Tofacitinib for the treatment of lichen planopilaris: a case series. Dermatol Ther 31(6):e12656

    PubMed  PubMed Central  Google Scholar 

  37. Okiyama N, Furumoto Y, Villarroel VA, Linton JT, Tsai WL, Gutermuth J et al (2014) Reversal of CD8 T‑cell-mediated mucocutaneous graft-versus-host-like disease by the JAK inhibitor tofacitinib. J Invest Dermatol 134(4):992–1000

    CAS  PubMed  Google Scholar 

  38. Strand V, Ahadieh S, French J, Geier J, Krishnaswami S, Menon S et al (2015) Systematic review and meta-analysis of serious infections with tofacitinib and biologic disease-modifying antirheumatic drug treatment in rheumatoid arthritis clinical trials. Arthritis Res Ther 17:362

    PubMed  PubMed Central  Google Scholar 

  39. Curtis JR, Xie F, Yun H, Bernatsky S, Winthrop KL (2016) Real-world comparative risks of herpes virus infections in tofacitinib and biologic-treated patients with rheumatoid arthritis. Ann Rheum Dis 75(10):1843–1847

    CAS  PubMed  Google Scholar 

  40. Wolk R, Armstrong EJ, Hansen PR, Thiers B, Lan S, Tallman AM et al (2017) Effect of tofacitinib on lipid levels and lipid-related parameters in patients with moderate to severe psoriasis. J Clin Lipidol 11(5):1243–1256

    PubMed  Google Scholar 

  41. Fleischmann R, Mysler E, Hall S, Kivitz AJ, Moots RJ, Luo Z et al (2017) Efficacy and safety of tofacitinib monotherapy, tofacitinib with methotrexate, and adalimumab with methotrexate in patients with rheumatoid arthritis (ORAL Strategy): a phase 3b/4, double-blind, head-to-head, randomised controlled trial. Lancet 390(10093):457–468

    CAS  PubMed  Google Scholar 

  42. van Vollenhoven RF, Fleischmann R, Cohen S, Lee EB, Garcia Meijide JA, Wagner S et al (2012) Tofacitinib or adalimumab versus placebo in rheumatoid arthritis. N Engl J Med 367(6):508–519

    PubMed  Google Scholar 

  43. Scott IC, Hider SL, Scott DL (2018) Thromboembolism with janus kinase (JAK) inhibitors for rheumatoid arthritis: how real is the risk? Drug Saf 41(7):645–653

    CAS  PubMed  Google Scholar 

  44. Winthrop KL (2017) The emerging safety profile of JAK inhibitors in rheumatic disease. Nat Rev Rheumatol 13(4):234–243

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Ghoreschi M.D..

Ethics declarations

Interessenkonflikt

K. Ghoreschi hat Honorare oder Reisekosten für Vortrags- und Forschungsaktivitäten von AbbVie, Almirall, Biogen, Boehringer Ingelheim, Bristol-Myers Squibb, Celgene, Delenex, Eli Lilly, Galderma, Janssen-Cilag, Medac, MSD, Novartis, Pfizer und UCB Pharma erhalten. F. Solimani und F.J. Hilke geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solimani, F., Hilke, F.J. & Ghoreschi, K. Pharmakologie der Januskinaseinhibitoren. Hautarzt 70, 934–941 (2019). https://doi.org/10.1007/s00105-019-04509-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00105-019-04509-x

Schlüsselwörter

Keywords

Navigation