Skin damage by tropospheric ozone

Hautschäden durch troposphärisches Ozon


Tropospheric (ground level) ozone (O3) is a secondary pollutant, emerging from other pollutants in the sunshine. Exposure to O3 correlates with higher pulmonary and cardiovascular mortality and affects reproductive health and the central nervous system acutely and chronically. Skin might be a potentially overlooked target organ of ambient O3. The experimental evidence suggests a positive correlation of O3 exposure with oxidative damage, impaired antioxidant defence and proinflammatory response in the skin. In time series studies it was observed that acute rises in O3 levels correlated with seeking medical help for skin conditions; however, whether these findings are specific to O3, is not yet clear. There is preliminary epidemiological evidence that long-term exposure to O3 is associated with premature skin aging. This finding was independent of co-exposure to other environmental factors affecting skin (e.g. ultraviolet radiation and air pollution). As concentrations of O3 are rising in many regions of the world, adverse cutaneous effects of O3 present a relevant public health concern.


Troposphärisches, das heißt bodennahes Ozon (O3) ist ein sekundärer Schadstoff, der durch Sonnenlicht aus anderen Schadstoffen hervorgeht. Die O3-Exposition ist mit einer erhöhten pulmonalen und kardiovaskulären Mortalität assoziiert und beeinträchtigt die reproduktive Gesundheit sowie das zentrale Nervensystem, dies sowohl akut als auch chronisch. Die Haut könnte ein potenziell verkanntes Zielorgan von O3 aus der Umwelt sein. Experimentelle Daten deuten auf einen positiven Zusammenhang zwischen der O3-Exposition und oxidativen Schäden, einem gestörten antioxidativen Schutz und einer proinflammatorischen Reaktion in der Haut hin. In Zeitreihenanalysen korrelierten akute Anstiege der O3-Konzentration mit medizinischen Konsultationen wegen Hauterkrankungen; ob diese Ergebnisse spezifisch für Ozon sind, ist allerdings noch nicht sicher. Es gibt erste epidemiologische Belege dafür, dass die langfristige O3-Exposition mit einer vorzeitigen Hautalterung assoziiert ist. Dieser Befund war unabhängig von der Koexposition gegenüber anderen hautschädigenden Umweltfaktoren, wie etwa ultravioletter Strahlung und Luftverschmutzung mit anderen Schadstoffen. Da die O3-Konzentrationen in vielen Gegenden der Welt ansteigen, sind schädliche Wirkungen von O3 auf die Haut ein relevantes Problem für die öffentliche Gesundheit.

This is a preview of subscription content, access via your institution.


  1. 1.

    Jenkin ME, Clemitshaw KC (2002) Ozone and other secondary photochemical pollutants: chemical processes governing their formation in the planetary boundary layer. In: Air Pollution Science for the 21st Century

    Google Scholar 

  2. 2.

    EEA (2017) Air quality in Europe—2017 report. EEA Technical Report. European Environment Agency, Copenhagen, p 80 (Available from:

    Google Scholar 

  3. 3.

    Brönnimann S, Neu U (1997) Weekend-weekday differences of near-surface ozone concentrations in Switzerland for different meteorological conditions. Atmos Environ 31(8):1127–1135 (, cited 2013 Oct 13)

    Article  Google Scholar 

  4. 4.

    EU (2008) Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe. Off J Eur Communities 152:1–43

    Google Scholar 

  5. 5.

    WHO (2005) Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide

    Google Scholar 

  6. 6.

    Lange SS, Mulholland SE, Honeycutt ME (2018) What are the net benefits of reducing the ozone standard to 65 ppb? An alternative analysis. Int J Environ Res Public Health 15(8):1–31

    Article  Google Scholar 

  7. 7.

    WHO (2000) Air quality guidelines for Europe. WHO Regional Publications, European Series, No. 91 (x + 273 pages,

    Google Scholar 

  8. 8.

    U.S. EPA (2013) Integrated science assessment (ISA) of ozone and related photochemical oxidants. Final Report, Feb 2013, EPA/600/R-10/076F, vol 600. U.S. Environmental Protection Agency, Washington, DC

    Google Scholar 

  9. 9.

    Bell ML, Samet JM, Dominici F (2004) Time-series studies of particulate matter. Annu Rev Public Health 25:247–280 (, cited 2013 Jan 29)

    Article  Google Scholar 

  10. 10.

    World Health Organization Regional Office for Europe (2013) Review of evidence on health aspects of air pollution—REVIHAAP Project. Technical Report

    Google Scholar 

  11. 11.

    Krutmann J, Bouloc A, Sore G, Bernard BA, Passeron T (2017) The skin aging exposome. J Dermatol Sci 85(3):152–161.

    Article  PubMed  Google Scholar 

  12. 12.

    Valacchi G (2010) Effect of ozone on cutaneous tissues. In: Farage MA, Miller KW, Maibach HI (eds) Textbook of aging skin. Springer, Berlin, Heidelberg, pp 411–420

    Google Scholar 

  13. 13.

    Valacchi G, Van der Vliet A, Schock BC, Okamoto T, Obermuller-Jevic U, Cross CE et al (2002) Ozone exposure activates oxidative stress responses in murine skin. Toxicology 179(1–2):163–170

    CAS  Article  Google Scholar 

  14. 14.

    Fakhrzadeh L, Laskin JD, Laskin DL (2004) Ozone-induced production of nitric oxide and TNF-alpha and tissue injury are dependent on NF-kappaB p50. Am J Physiol Lung Cell Mol Physiol 287(2):L279–L285

    CAS  Article  Google Scholar 

  15. 15.

    Thiele JJ, Hsieh SN, Briviba K, Sies H (1999) Protein oxidation in human stratum corneum: Susceptibility of keratins to oxidation in vitro and presence of a keratin oxidation gradient in vivo. J Invest Dermatol 113(3):335–339.

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Valacchi G, Pagnin E, Corbacho AM, Olano E, Davis PA, Packer L et al (2004) In vivo ozone exposure induces antioxidant/stress-related responses in murine lung and skin. Free Radic Biol Med 36(5):673–681

    CAS  Article  Google Scholar 

  17. 17.

    Valacchi G, Pagnin E, Okamoto T, Corbacho AM, Olano E, Davis PA et al (2003) Induction of stress proteins and MMP-9 by 0.8 ppm of ozone in murine skin. Biochem Biophys Res Commun 305(3):741–746

    CAS  Article  Google Scholar 

  18. 18.

    Fortino V, Maioli E, Torricelli C, Davis P, Valacchi G (2007) Cutaneous MMPs are differently modulated by environmental stressors in old and young mice. Toxicol Lett 173(2):73–79

    CAS  Article  Google Scholar 

  19. 19.

    Caley MP, Martins VLC, O’Toole EA (2015) Metalloproteinases and wound healing. Adv Wound Care 4(4):225–234.

    Article  Google Scholar 

  20. 20.

    Pittayapruek P, Meephansan J, Prapapan O, Komine M, Ohtsuki M (2016) Role of matrix metalloproteinases in photoaging and photocarcinogenesis. Int J Mol Sci 17(6):E868

    Article  Google Scholar 

  21. 21.

    Xu X, Wang Y, Chen Z, Sternlicht MD, Hidalgo M, Steffensen B (2005) Matrix metalloproteinase-2 contributes to cancer cell migration on collagen. Cancer Res 65(1):130–136 (

    CAS  PubMed  Google Scholar 

  22. 22.

    Xu F, Yan S, Wu M, Li F, Xu X, Song W et al (2011) Ambient ozone pollution as a risk factor for skin disorders. Br J Dermatol 165(1):224–225

    CAS  Article  Google Scholar 

  23. 23.

    Larrieu S, Lefranc A, Gault G, Chatignoux E, Couvy F, Jouves B et al (2009) Are the short-term effects of air pollution restricted to cardiorespiratory diseases? Am J Epidemiol 169(10):1201–1208 (

    Article  Google Scholar 

  24. 24.

    Szyszkowicz M, Porada E, Kaplan GG, Rowe BH (2010) Ambient ozone and emergency department visits for cellulitis. Int J Environ Res Public Health 7(11):4078–4088 (

    Article  Google Scholar 

  25. 25.

    Szyszkowicz M, Kousha T, Valacchi G (2016) Ambient air pollution and emergency department visits for skin conditions. Glob Dermatol 3(5):323–329 (

    Article  Google Scholar 

  26. 26.

    Vierkötter A, Schikowski T, Ranft U, Sugiri D, Matsui M, Krämer U et al (2010) Airborne particle exposure and extrinsic skin aging. J Invest Dermatol 130(12):2719–2726

    Article  Google Scholar 

  27. 27.

    Hüls A, Vierkötter A, Gao W, Krämer U, Yang Y, Ding A et al (2016) Traffic-related air pollution contributes to development of facial lentigines: further epidemiological evidence from caucasians and asians. J Invest Dermatol 136(5):1053–1056

    Article  Google Scholar 

  28. 28.

    Hüls A, Schikowski T, Krämer U, Sugiri D, Stolz S, Vierkoetter A, Krutmann J (2015) Ozone exposure and extrinsic skin aging: results from the SALIA cohort. Abstract. J Invest Dermatol 135:S49–S57 (

    Article  Google Scholar 

  29. 29.

    Fuks K, Hüls A, Sugiri D, Goebel J, Demuth I, Krämer U, Krutmann J, Schikowski T (2018) High environmental ozone levels and extrinsic skin aging. ISES-ISEE 2018 Joint Annual Meeting, Ottawa. Abstract P03.1280 (Abstract book available at:

    Google Scholar 

  30. 30.

    Vierkötter A, Ranft U, Krämer U, Sugiri D, Reimann V, Krutmann J (2009) The SCINEXA: a novel, validated score to simultaneously assess and differentiate between intrinsic and extrinsic skin ageing. J Dermatol Sci 53(3):207–211 (

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Prof. Dr. G. Valacchi.

Ethics declarations

Conflict of interest

K. Fuks, B. Woodby and G. Valacchi declare that they have no competing interests.

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

The German version of this article can be found under

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fuks, K.B., Woodby, B. & Valacchi, G. Skin damage by tropospheric ozone. Hautarzt (2019).

Download citation


  • Air pollution
  • Skin aging
  • Skin wrinkling
  • Oxidative stress
  • Peroxidation


  • Luftverschmutzung
  • Hautalterung
  • Faltenbildung der Haut
  • Oxidativer Stress
  • Peroxidation